The importance of training for operators in industrial contexts is widely highlighted in literature. Virtual Reality (VR) technology is considered an efficient solution for training, since it provides immersive, realistic, and interactive simulations environments where the operator can learn-by-doing, far from the risks of the real field. Its efficacy has been demonstrated by several studies, but a proper assessment of the operator’s cognitive response in terms of stress and cognitive load, during the use of such technology, is still lacking. This paper proposes a comprehensive methodology for the analysis of user’s cognitive states, suitable for each kind of training in the industrial sector and beyond. Preliminary feasibility analysis refers to virtual training for assembly of agricultural vehicles. The proposed protocol analysis allowed understanding the operators’ loads to optimize the VR training application, considering the mental demand during the training, and thus avoiding stress, mental overload, improving the user performance.
Brunzini, A., Grandi, F., Peruzzini, M., Pellicciari, M. (2021). Virtual training for assembly tasks: a framework for the analysis of the cognitive impact on operators. PROCEDIA MANUFACTURING, 55, 527-534 [10.1016/j.promfg.2021.10.072].
Virtual training for assembly tasks: a framework for the analysis of the cognitive impact on operators
Peruzzini, Margherita
;
2021
Abstract
The importance of training for operators in industrial contexts is widely highlighted in literature. Virtual Reality (VR) technology is considered an efficient solution for training, since it provides immersive, realistic, and interactive simulations environments where the operator can learn-by-doing, far from the risks of the real field. Its efficacy has been demonstrated by several studies, but a proper assessment of the operator’s cognitive response in terms of stress and cognitive load, during the use of such technology, is still lacking. This paper proposes a comprehensive methodology for the analysis of user’s cognitive states, suitable for each kind of training in the industrial sector and beyond. Preliminary feasibility analysis refers to virtual training for assembly of agricultural vehicles. The proposed protocol analysis allowed understanding the operators’ loads to optimize the VR training application, considering the mental demand during the training, and thus avoiding stress, mental overload, improving the user performance.File | Dimensione | Formato | |
---|---|---|---|
2021 - PROMFG Virtual training for assembly tasks.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.