Concrete waste (CW) recycling stands as a promising strategy to promote sustainable construction practices. This research aims to assess the feasibility of using recycled concrete aggregates (RCA) as a surrogate for natural aggregates (NA) in concrete applications and reduce the environmental impact associated with the depletion of natural resources and landfill space. To achieve these objectives, CW was segregated from debris mixes of construction and demolition waste (CDW), collected, crushed, and graded to generate RCA. Thirty-two concrete samples were prepared and categorized into four distinct groups with 0% (reference), 50%, 75%, and 100% substitution levels for both coarse RCA (CRCA) and fine RCA (FRCA), all utilized simultaneously. Concurrently, the environmental impacts of producing 1 m3 of concrete were evaluated using a life cycle assessment (LCA) approach, (cradle-to-gate) covering three phases, the raw material supply (A1), transportation (A2) and concrete production (A3). At the 50% replacement level, the mechanical properties of recycled aggregate concrete (RAC) demonstrated a 20.0% increase in splitting tensile strength, accompanied by marginal decrease in workability (15.0%) and compressive strength (6.0%). In addition, at that percentage, the average environmental effects were reduced by 31.3%, with specific reductions of 34.7% for A1, 40.3% for A2, and no change in A3.

Incorporating coarse and fine recycled aggregates into concrete mixes: mechanical characterization and environmental impact / Younes A.; Elbeltagi E.; Diab A.; Tarsi G.; Saeed F.; Sangiorgi C.. - In: JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT. - ISSN 1438-4957. - ELETTRONICO. - /:(2023), pp. 1-15. [10.1007/s10163-023-01834-1]

Incorporating coarse and fine recycled aggregates into concrete mixes: mechanical characterization and environmental impact

Sangiorgi C.
Ultimo
2023

Abstract

Concrete waste (CW) recycling stands as a promising strategy to promote sustainable construction practices. This research aims to assess the feasibility of using recycled concrete aggregates (RCA) as a surrogate for natural aggregates (NA) in concrete applications and reduce the environmental impact associated with the depletion of natural resources and landfill space. To achieve these objectives, CW was segregated from debris mixes of construction and demolition waste (CDW), collected, crushed, and graded to generate RCA. Thirty-two concrete samples were prepared and categorized into four distinct groups with 0% (reference), 50%, 75%, and 100% substitution levels for both coarse RCA (CRCA) and fine RCA (FRCA), all utilized simultaneously. Concurrently, the environmental impacts of producing 1 m3 of concrete were evaluated using a life cycle assessment (LCA) approach, (cradle-to-gate) covering three phases, the raw material supply (A1), transportation (A2) and concrete production (A3). At the 50% replacement level, the mechanical properties of recycled aggregate concrete (RAC) demonstrated a 20.0% increase in splitting tensile strength, accompanied by marginal decrease in workability (15.0%) and compressive strength (6.0%). In addition, at that percentage, the average environmental effects were reduced by 31.3%, with specific reductions of 34.7% for A1, 40.3% for A2, and no change in A3.
2023
Incorporating coarse and fine recycled aggregates into concrete mixes: mechanical characterization and environmental impact / Younes A.; Elbeltagi E.; Diab A.; Tarsi G.; Saeed F.; Sangiorgi C.. - In: JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT. - ISSN 1438-4957. - ELETTRONICO. - /:(2023), pp. 1-15. [10.1007/s10163-023-01834-1]
Younes A.; Elbeltagi E.; Diab A.; Tarsi G.; Saeed F.; Sangiorgi C.
File in questo prodotto:
File Dimensione Formato  
2023_Younes et al.pdf

accesso aperto

Descrizione: Online version
Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/949474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact