Edge computing aims at better supporting low-latency applications. One of its key techniques is computation offloading, the process that outsources computing tasks from resourced-constrained mobile devices and moves them to edge data centers. In this paper, we tackle an emerging problem within the umbrella of computation offloading, i.e., migration of offloaded inference tasks of Artificial Intelligence (AI) trained models. Such context tailors migration aspects of data-sensitive services where i) the value of the updates is inversely proportional to the data age and ii) outage is highly detrimental to accuracy. To tackle this challenge, we propose Mobile Edge Data-handoff (MED) a framework able to relocate inference or online training tasks from one edge datacenter to another by moving only the necessary data to minimize any accuracy drop during the process. We implemented MED in a well-known edge computing emulator, openLEON, and experimentally verified its performance with an AI-based Industry 4.0 application that forecasts the gas flow in a chemical plant. For our experiments, we use a real, open-source dataset that contains sensors readings. Collected results show that MED, employing proactive data handoff algorithms, is able to minimize the packet loss during the handoff thereby providing guarantees on the inference accuracy.

Scotece, D., Fiandrino, C., Foschini, L. (2023). Handling Data Handoff of AI-based Applications in Edge Computing Systems. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 20(4), 4435-4447 [10.1109/TNSM.2023.3267942].

Handling Data Handoff of AI-based Applications in Edge Computing Systems

Scotece, Domenico
;
Foschini, Luca
2023

Abstract

Edge computing aims at better supporting low-latency applications. One of its key techniques is computation offloading, the process that outsources computing tasks from resourced-constrained mobile devices and moves them to edge data centers. In this paper, we tackle an emerging problem within the umbrella of computation offloading, i.e., migration of offloaded inference tasks of Artificial Intelligence (AI) trained models. Such context tailors migration aspects of data-sensitive services where i) the value of the updates is inversely proportional to the data age and ii) outage is highly detrimental to accuracy. To tackle this challenge, we propose Mobile Edge Data-handoff (MED) a framework able to relocate inference or online training tasks from one edge datacenter to another by moving only the necessary data to minimize any accuracy drop during the process. We implemented MED in a well-known edge computing emulator, openLEON, and experimentally verified its performance with an AI-based Industry 4.0 application that forecasts the gas flow in a chemical plant. For our experiments, we use a real, open-source dataset that contains sensors readings. Collected results show that MED, employing proactive data handoff algorithms, is able to minimize the packet loss during the handoff thereby providing guarantees on the inference accuracy.
2023
Scotece, D., Fiandrino, C., Foschini, L. (2023). Handling Data Handoff of AI-based Applications in Edge Computing Systems. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 20(4), 4435-4447 [10.1109/TNSM.2023.3267942].
Scotece, Domenico; Fiandrino, Claudio; Foschini, Luca
File in questo prodotto:
File Dimensione Formato  
openLeon_TNSM.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 4.38 MB
Formato Adobe PDF
4.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/948276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact