Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.

Conti V., Parrotta L., Romi M., Del Duca S., Cai G. (2023). Tomato Biodiversity and Drought Tolerance: A Multilevel Review. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 24(12), 1-21 [10.3390/ijms241210044].

Tomato Biodiversity and Drought Tolerance: A Multilevel Review

Conti V.
Co-primo
;
Parrotta L.
Co-primo
;
Del Duca S.
;
2023

Abstract

Ongoing global climate change suggests that crops will be exposed to environmental stresses that may affect their productivity, leading to possible global food shortages. Among these stresses, drought is the most important contributor to yield loss in global agriculture. Drought stress negatively affects various physiological, genetic, biochemical, and morphological characteristics of plants. Drought also causes pollen sterility and affects flower development, resulting in reduced seed production and fruit quality. Tomato (Solanum lycopersicum L.) is one of the most economically important crops in different parts of the world, including the Mediterranean region, and it is known that drought limits crop productivity, with economic consequences. Many different tomato cultivars are currently cultivated, and they differ in terms of genetic, biochemical, and physiological traits; as such, they represent a reservoir of potential candidates for coping with drought stress. This review aims to summarize the contribution of specific physio-molecular traits to drought tolerance and how they vary among tomato cultivars. At the genetic and proteomic level, genes encoding osmotins, dehydrins, aquaporins, and MAP kinases seem to improve the drought tolerance of tomato varieties. Genes encoding ROS-scavenging enzymes and chaperone proteins are also critical. In addition, proteins involved in sucrose and CO2 metabolism may increase tolerance. At the physiological level, plants improve drought tolerance by adjusting photosynthesis, modulating ABA, and pigment levels, and altering sugar metabolism. As a result, we underline that drought tolerance depends on the interaction of several mechanisms operating at different levels. Therefore, the selection of drought-tolerant cultivars must consider all these characteristics. In addition, we underline that cultivars may exhibit distinct, albeit overlapping, multilevel responses that allow differentiation of individual cultivars. Consequently, this review highlights the importance of tomato biodiversity for an efficient response to drought and for preserving fruit quality levels.
2023
Conti V., Parrotta L., Romi M., Del Duca S., Cai G. (2023). Tomato Biodiversity and Drought Tolerance: A Multilevel Review. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 24(12), 1-21 [10.3390/ijms241210044].
Conti V.; Parrotta L.; Romi M.; Del Duca S.; Cai G.
File in questo prodotto:
File Dimensione Formato  
Tomato Biodiversity and Drought Tolerance A Multilevel Review.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/947399
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact