We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates.
Praetorius D., Ruggeri M., Stephan E.P. (2020). The saturation assumption yields optimal convergence of two-level adaptive BEM. APPLIED NUMERICAL MATHEMATICS, 152, 105-124 [10.1016/j.apnum.2020.01.014].
The saturation assumption yields optimal convergence of two-level adaptive BEM
Ruggeri M.;
2020
Abstract
We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates.File | Dimensione | Formato | |
---|---|---|---|
Praetorius_etal_ANM_2021_The_saturation_assumption_yields_optimal_convergence (1).pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.