Context. Recent work based on a global measurement of the ICM properties finds evidence for an increase in the iron abundance in galaxy clusters with temperatures around 2-4 keV up to a value about 3 times higher than is typical of very hot clusters ZFe ≃ 0.25 Z_⊙. Aims: We have started a study of the metal distribution in nearby X-ray luminous poor galaxy clusters in the temperature range 3-4 keV with measured high abundances. Our study aims at spatially resolving the metal content of the central regions of the ICM, in particular characterizing how our measurements are biased by the diagnostics adopted and by the possible multi-temperature nature of the projected observed spectra. We report here on a 42 ks XMM-Newton observation of the first object in the sample, the cluster Abell 2028. Methods: We selected interesting regions of the ICM to analyze the spatially resolved structure of projected temperature and abundance, thereby producing two-dimensional maps. Results: The XMM-Newton observation of the first object of the sample, the cluster Abell 2028, reveals the complex structure of the cluster over a scale of ~300 kpc, showing an interaction between two subclusters in cometary-like configurations. Cold fronts have been detected at the leading edges of the two substructures. The core of the main subcluster is likely hosting a cool corona. We show that a one-component fit for this region returns a biased high metallicity. The inverse iron bias is caused by the behavior of the fitting code in shaping the Fe-L complex. In the presence of a multi-temperature structure of the ICM, the best-fit metallicity turns out to be artificially higher when the projected spectrum is modeled with a single temperature component, while it is not related to the presence of both Fe-L and Fe-K emission lines in the spectrum. After accounting for the inverse iron bias, the overall abundance of the cluster is consistent with the one typical of hotter, more massive clusters. Conclusions: We caution against interpreting high abundances inferred when fitting a single thermal component to spectra derived from relatively large apertures in 3-4 keV clusters, because the inverse iron bias can be present. Most of the inferences trying to relate high abundances in 3-4 keV clusters to fundamental physical processes will probably have to be revised.

Apparent high metallicity in 3-4 keV galaxy clusters: the inverse iron-bias in action in the case of the merging cluster Abell 2028

BRIGHENTI, FABRIZIO;GITTI, MYRIAM;
2010

Abstract

Context. Recent work based on a global measurement of the ICM properties finds evidence for an increase in the iron abundance in galaxy clusters with temperatures around 2-4 keV up to a value about 3 times higher than is typical of very hot clusters ZFe ≃ 0.25 Z_⊙. Aims: We have started a study of the metal distribution in nearby X-ray luminous poor galaxy clusters in the temperature range 3-4 keV with measured high abundances. Our study aims at spatially resolving the metal content of the central regions of the ICM, in particular characterizing how our measurements are biased by the diagnostics adopted and by the possible multi-temperature nature of the projected observed spectra. We report here on a 42 ks XMM-Newton observation of the first object in the sample, the cluster Abell 2028. Methods: We selected interesting regions of the ICM to analyze the spatially resolved structure of projected temperature and abundance, thereby producing two-dimensional maps. Results: The XMM-Newton observation of the first object of the sample, the cluster Abell 2028, reveals the complex structure of the cluster over a scale of ~300 kpc, showing an interaction between two subclusters in cometary-like configurations. Cold fronts have been detected at the leading edges of the two substructures. The core of the main subcluster is likely hosting a cool corona. We show that a one-component fit for this region returns a biased high metallicity. The inverse iron bias is caused by the behavior of the fitting code in shaping the Fe-L complex. In the presence of a multi-temperature structure of the ICM, the best-fit metallicity turns out to be artificially higher when the projected spectrum is modeled with a single temperature component, while it is not related to the presence of both Fe-L and Fe-K emission lines in the spectrum. After accounting for the inverse iron bias, the overall abundance of the cluster is consistent with the one typical of hotter, more massive clusters. Conclusions: We caution against interpreting high abundances inferred when fitting a single thermal component to spectra derived from relatively large apertures in 3-4 keV clusters, because the inverse iron bias can be present. Most of the inferences trying to relate high abundances in 3-4 keV clusters to fundamental physical processes will probably have to be revised.
Gastaldello F; Ettori S; Balestra, I; Brighenti F; Buote D A; de Grandi S; Ghizzardi S; Gitti M; Tozzi P
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/94266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact