In this paper, we extend the rectangular side of the shuffle conjecture by stating a rectangular analogue of the square paths conjecture. In addition, we describe a set of combinatorial objects and one statistic that are a first step towards a rectangular extension of (the rise version of) the Delta conjecture, and of (the rise version of) the Delta square conjecture, corresponding to the case q=1 of an expected general statement. We also prove our new rectangular paths conjecture in the special case when the sides of the rectangle are coprime.

Iraci, A., Pagaria, R., Paolini, G., Vanden Wyngaerd, A. (2023). Rectangular analogues of the square paths conjecture and the univariate Delta conjecture. COMBINATORIAL THEORY, 3(2), 1-23 [10.5070/C63261980].

Rectangular analogues of the square paths conjecture and the univariate Delta conjecture

Iraci, Alessandro;Pagaria, Roberto;Paolini, Giovanni;
2023

Abstract

In this paper, we extend the rectangular side of the shuffle conjecture by stating a rectangular analogue of the square paths conjecture. In addition, we describe a set of combinatorial objects and one statistic that are a first step towards a rectangular extension of (the rise version of) the Delta conjecture, and of (the rise version of) the Delta square conjecture, corresponding to the case q=1 of an expected general statement. We also prove our new rectangular paths conjecture in the special case when the sides of the rectangle are coprime.
2023
Iraci, A., Pagaria, R., Paolini, G., Vanden Wyngaerd, A. (2023). Rectangular analogues of the square paths conjecture and the univariate Delta conjecture. COMBINATORIAL THEORY, 3(2), 1-23 [10.5070/C63261980].
Iraci, Alessandro; Pagaria, Roberto; Paolini, Giovanni; Vanden Wyngaerd, Anna
File in questo prodotto:
File Dimensione Formato  
eScholarship UC item 53s7m4h3.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 537.61 kB
Formato Adobe PDF
537.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/942223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact