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Abstract. In this paper, we extend the rectangular side of the shuffle conjecture by stating
a rectangular analogue of the square paths conjecture. In addition, we describe a set of
combinatorial objects and one statistic that are a first step towards a rectangular extension
of (the rise version of) the Delta conjecture, and of (the rise version of) the Delta square
conjecture, corresponding to the case q = 1 of an expected general statement. We also prove
our new rectangular paths conjecture in the special case when the sides of the rectangle are
coprime.
Keywords. Macdonald polynomials, symmetric functions
Mathematics Subject Classifications. 05E05

1. Introduction

In the ’90s, Garsia and Haiman set out to prove the Schur positivity of the (modified) Mac-
donald polynomials by showing them to be the bi-graded Frobenius characteristic of certain
Garsia–Haiman modules [GH93]. Their prediction was confirmed in 2001 when Haiman used
the algebraic geometry of the Hilbert scheme to prove that the dimension of their modules
equals n! [Hai01], thus proving the n! theorem. In the course of these developments, it became
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clear that there were remarkable connections to be found between Macdonald polynomials the-
ory and the representation theory of the symmetric group. For example, during their quest for
Macdonald positivity, Garsia and Haiman introduced the Sn-module of diagonal harmonics,
i.e. the coinvariants of the diagonal action of Sn on polynomials in two sets of n variables, and
they conjectured that its Frobenius characteristic is given by ∇en, where ∇ is the nabla op-
erator on symmetric functions introduced in [BGHT99], which acts diagonally on Macdonald
polynomials. Haiman proved this conjecture in 2002 [Hai02].

The combinatorial side of things solidified when Haglund, Haiman, Loehr, Remmel, and
Ulyanov then formulated the so-called shuffle conjecture [HHL+05], i.e. they predicted a com-
binatorial formula for ∇en in terms of labelled Dyck paths, which are lattice paths using North
and East steps going from (0, 0) to (n, n) and staying weakly above the line connecting these
two points (called the main diagonal). Several years later, Haglund, Morse, and Zabrocki con-
jectured a compositional refinement of the shuffle conjecture, which also specified all the points
where the Dyck paths return to the main diagonal [HMZ12]. This was the statement later proved
by Carlsson and Mellit in [CM18], implying the shuffle theorem.

Over the years, this subject has revealed itself to be extremely fruitful and to have strik-
ing connections to other fields of mathematics including elliptical Hall algebras [SV11], affine
Hecke algebras [CM18, CGM20], Springer fibers [Hik14], the homology of torus knots [Wil18,
Mel22], the shuffle algebra of symmetric functions [Neg14, BHM+23b], and many more.

In this paper, we add a few (conjectural) formulas to the substantial list of variants and gener-
alisations inspired by the success story of the shuffle theorem; that is, equations with a symmetric
function related to Macdonald polynomials on one side and lattice paths combinatorics on the
other. Furthermore, we support one of these conjectures by proving a non-trivial special case.

One of the earliest shuffle-like formulas was conjectured in 2007 by Loehr and Warring-
ton [LW07]. They predicted an expression of ∇ω(pn) in terms of square paths, i.e. lattice paths
from (0, 0) to (n, n) using only North and East steps and ending with an East step (without the
restriction of staying above the main diagonal). Their formula was proved by Sergel in [Ser17]
to be a consequence of the shuffle theorem.

Next, Haglund, Remmel, and Wilson formulated the Delta conjecture [HRW18], a pair of
conjectures for the symmetric function ∆′

en−k−1
en in terms of decorated Dyck paths, where k

decorations are placed on either rises or valleys of the path. The symmetric function operator∆′
f

acts diagonally on the Macdonald polynomials and generalises ∇, in a sense. The rise version
of the Delta conjecture was proved by D’Adderio and Mellit in [DM22], using the compositional
refinement in [DIVW21b]. A Delta square conjecture was stated in [DIVW21a] and is still open
today; it extends (the rise version of) the Delta conjecture in the same fashion as the square paths
theorem extends the shuffle theorem. The valley version also has similar extensions [QW20,
IVW21], but it lacks a compositional version and it is still open.

Around the same time as the formulation of the Delta conjecture, the story has been ex-
tended to rectangular Dyck paths: paths from (0, 0) to (m,n) staying above the main diagonal.
In [BGSX16a], building on the work in [GN15], Bergeron, Garsia, Sergel, and Xin conjectured
that a certain symmetric function related to the elliptic Hall algebra studied by Schiffmann and
Vasserot [SV11] can be expressed in terms of rectangular Dyck paths. Their prediction was
recently proved by Mellit [Hog17, Mel21].
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In this paper, we state a rectangular analogue of the square paths conjecture, where the com-
binatorial objects are lattice paths from (0, 0) to (m,n) ending with an East step. Our main result
is the proof of the special case of our conjecture where the sides of the rectangle are coprime.
Moreover, using the Theta operators (first introduced in [DIVW21b]), we conjecture the special
case q = 1 of a rectangular analogue of (the rise version of) the Delta conjecture and the Delta
square conjecture, in terms of rectangular paths that lie above some horizontal translation of the
broken diagonal, a “decorated” analogue of the diagonal of the rectangle that turns out to be
necessary to describe the right set of combinatorial objects.

2. Symmetric functions

For all the undefined notations and the unproven identities, we refer to [DIVW22, Section 1],
where definitions, proofs, and/or references can be found.

We denote by Λ the graded algebra of symmetric functions with coefficients in Q(q, t), and
by ⟨ , ⟩ the Hall scalar product on Λ, defined by declaring that the Schur functions form an
orthonormal basis.

The standard bases of the symmetric functions that will appear in our calculations are the
monomial {mλ}λ, complete {hλ}λ, elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ bases.

For a partition µ ⊢ n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] =
∑
λ⊢n

K̃λµ(q, t)sλ

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)t
n(µ)

are the (modified) Kostka coefficients (see [Hag08, Chapter 2] for more details).
Macdonald polynomials form a basis of the algebra of symmetric functions Λ. This is a

modification of the basis introduced by Macdonald [Mac95].
If we identify the partition µ with its Ferrer diagram, i.e. with the collection of cells

{(i, j) | 1 ⩽ i ⩽ µj, 1 ⩽ j ⩽ ℓ(µ)}, then for each cell c ∈ µ we refer to the arm, leg, co-
arm and co-leg (denoted respectively by aµ(c), lµ(c), a

′
µ(c), l

′
µ(c)) as the number of cells in µ

that are strictly to the right, below, to the left and above c in µ, respectively (see Figure 2.1).
Let M := (1− q)(1− t). For every partition µ, we define the following constants:

Bµ := Bµ(q, t) =
∑
c∈µ

qa
′
µ(c)tl

′
µ(c), Πµ := Πµ(q, t) =

∏
c∈µ/(1)

(1− qa
′
µ(c)tl

′
µ(c)).

We will make extensive use of the plethystic notation (cf. [Hag08, Chapter 1]). We also need
several linear operators on Λ.

Definition 2.1 ([BG99, 3.11]). We define the linear operator ∇ : Λ → Λ on the eigenbasis of
Macdonald polynomials as

∇H̃µ = e|µ|[Bµ]H̃µ.
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Figure 2.1: Arm, leg, co-arm, and co-leg of a cell of a partition.

Definition 2.2. We define the linear operator Π : Λ → Λ on the eigenbasis of Macdonald poly-
nomials as

ΠH̃µ = ΠµH̃µ

where we conventionally set Π∅ := 1.

Definition 2.3. For f ∈ Λ, we define the linear operators ∆f ,∆
′
f : Λ → Λ on the eigenbasis of

Macdonald polynomials as

∆fH̃µ = f [Bµ]H̃µ, ∆′
fH̃µ = f [Bµ − 1]H̃µ.

Observe that on the vector space of homogeneous symmetric functions of degree n, denoted
by Λ(n), the operator ∇ equals ∆en .

Definition 2.4 ([DIVW21b, (28)]). For any symmetric function f ∈ Λ(n) we define the Theta
operators on Λ in the following way: for every F ∈ Λ(m) we set

ΘfF :=


0 if n ⩾ 1 and m = 0
f · F if n = 0 and m = 0
Πf

[
X
M

]
Π−1F otherwise

,

and we extend by linearity the definition to any f, F ∈ Λ.

It is clear that Θf is linear. In addition, if f is homogeneous of degree k, then so is Θf :

ΘfΛ
(n) ⊆ Λ(n+k) for f ∈ Λ(k).

Finally, we need to refer to [BGSX16a, Algorithm 4.1] (see also [BGSX16b, Definition 1.1,
Theorem 2.5]).

Definition 2.5. Let m,n > 0. Let a, b, c, d ∈ N such that a + c = m, b + d = n, ad − bc =
gcd(m,n). We recursively define Qm,n as an operator on Λ by

Qm,n =
1

M
(Qc,dQa,b −Qa,bQc,d) ,

with base cases
Q1,0 = D0 = id−M∆e1 and Q0,1 = −e1

(where f is the multiplication by f ).
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Figure 3.1: A 7× 9 rectangular path with its base diagonal and the main diagonal (dashed).

Definition 2.6. For a coprime pair (a, b) and f ∈ Λ(d), we define Fa,b(f) as follows. Let

f =
∑
λ⊢d

cλ(q, t)

(
qt

qt− 1

)ℓ(λ)

hλ

[
1− qt

qt
X

]
.

Then, we define

Fa,b(f) :=
∑
λ⊢d

cλ(q, t)

ℓ(λ)∏
i=1

Qλia,λib(1).

For our convenience, we use the shorthands

em,n := Fa,b(ed), pm,n := Fa,b(pd)

where m = ad, n = bd, and gcd(a, b) = 1. Beware: e4,2 = F2,1(e2), but e42 = e4e2.

3. Combinatorial definitions

The objects we are concerned with are rectangular Dyck paths and rectangular paths. All the
following definitions are classical for rectangular Dyck paths [BGSX16a] and new for rectangu-
lar paths.

3.1. Rectangular paths

Definition 3.1. A rectangular path of size m × n is a lattice path composed of unit North and
East steps, going from (0, 0) to (m,n), and ending with an East step. A rectangular Dyck path
is a rectangular path that lies weakly above the diagonal my = nx (called the main diagonal).

We denote the sets of rectangular paths and rectangular Dyck paths of sizem×n asRP(m,n)
and RD(m,n), respectively.
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Definition 3.2. For am×n rectangular path π, let ai be the (signed) horizontal distance between
the starting point of the i-th North step and the main diagonal. We define the area word of the
path to be the sequence (a1, . . . , an). Set s := −min{ai | 1 ⩽ i ⩽ n}, which we call the shift
of the path. Note that s = 0 if π is a rectangular Dyck path, and s > 0 otherwise.

Definition 3.3. We call the diagonal my = n(x−s), which is the lowest diagonal that intersects
the path, the base diagonal.

Definition 3.4. The area of a rectangular path π is area(π) :=
∑n

i=1⌊ai+s⌋. This is the number
of whole squares that lie entirely between the path π and its base diagonal.

For example, the path in Figure 3.1 has area word(
0,−11

9
,−4

9
,
1

3
,−8

9
,−1

9
,
2

3
,−5

9
,
2

9

)
or, approximating to two decimal places,

(0, −1.22, −0.44, 0.33, −0.88, −0.11, 0.66, −0.55, 0.22).

Thus, its shift is 11
9

and its area is 5.

3.2. Decorated rectangular paths

In a similar fashion as the rise version of the Delta conjecture [HRW18] (which is now a theo-
rem [DM22, BHM+23a]), we introduce the concept of decorated rises for rectangular paths.

Definition 3.5. The rises of a rectangular path are the indices of the rows containing a North
step that immediately follows another North step. A decorated rectangular path is a rectangular
path with a given subset dr of its rises.

Definition 3.6. For a decorated rectangular path of size (m+k)×(n+k) with k decorated rises,
we define the broken diagonal to be the broken segment built as follows. Let (x1, y1) = (0, 0),
then for 1 ⩽ i < n+ k, define

(xi+1, yi+1) =

{
(xi +

m
n
, yi + 1) if i ̸∈ dr

(xi + 1, yi + 1) if i ∈ dr.

The broken diagonal is the broken segment joining (xi, yi) and (xi+1, yi+1) for all i, that is, the
line that starts at (0, 0) and the proceeds with slope n

m
in rows not containing decorated rises,

and with slope 1 in rows that contain decorated rises.

Note that, if the path has no decorated rises, then the broken diagonal coincides with the
main diagonal.

Definition 3.7. We define a decorated rectangular Dyck path to be a decorated rectangular path
that lies weakly above the broken diagonal.
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∗

∗
∗

Figure 3.2: A decorated rectangular Dyck path with its broken diagonal.

See Figure 3.2 for an example of such a path. We use a ∗ to mark the decorated rises.
The definitions of area word and area extend to decorated paths as well, using the broken

diagonal in place of the main diagonal.

Definition 3.8. For a (m + k) × (n + k) decorated rectangular path (π, dr) with k decorated
rises, let ai be the horizontal distance between the starting point of the i-th North step and the
broken diagonal. We define the area word of the path as the sequence a1, . . . , an+k. We de-
fine s := −min{ai | 1 ⩽ i ⩽ n+ k} to be the shift of the path.

Definition 3.9. We define the area of a decorated rectangular path π as

area(π) :=
∑
i ̸∈dr

⌊ai + s⌋.

The area of the path in Figure 3.2 is equal to 3.

3.3. Labelled paths

Finally, we need to introduce labelled objects.

Definition 3.10. A labelling of a (decorated) rectangular (Dyck) path is an assignment of a pos-
itive integer label to each North step of the path, such that consecutive North steps are assigned
strictly increasing labels. A labelled (decorated) rectangular (Dyck) path is a (decorated) rect-
angular (Dyck) path together with a labelling.

We say that a labelling is standard if the set of labels is [n] := {1, . . . , n}, where n is the
height of the path.

We denote by wi the label assigned to the i-th North step of the path.
We also denote the sets of labelled rectangular paths and labelled rectangular Dyck paths

of size m × n as LRP(m,n) and LRD(m,n) respectively, and the sets of labelled decorated
rectangular paths and labelled decorated rectangular Dyck paths of size (m + k) × (n + k)
with k decorated rises as LRP(m+ k, n+ k)∗k and LRD(m+ k, n+ k)∗k, respectively.
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Figure 3.3: A 7× 9 labelled rectangular path (left) and labelled decorated Dyck path (right).

Definition 3.11. Given a labelled (decorated) rectangular (Dyck) path (π, dr, w), we define
xw =

∏
i xwi

. With an abuse of notation, we will sometimes write π to mean (π, dr, w), in
which case we will have xπ = xw.

Given a rectangular (Dyck) path π, the cells in the rectangular grid going from (0, 0) to (m,n)
that lie above the path form the Ferrer’s diagram of a partition µ(π).

Here we extend the definition of dinv given in [BGSX16a] (see also [Mel21]) for rectangular
Dyck paths to any rectangular path. We will describe it in two different ways.

Definition 3.12. Let π be a m×n rectangular path, and let 1 ⩽ i, j ⩽ n. We say that i attacks j
in π (or (i, j) is an attack relation for π) if

(ai, i) <lex (aj, j) <lex (ai +
m
n
, i).

At this point, we can define the dinv of an unlabelled path.

Definition 3.13. We define the path dinv of a rectangular path π as

pdinv(π) := #
{
c ∈ µ(π) | a

ℓ+1
⩽ m

n
< a+1

ℓ

}
where a = aµ(c) and ℓ = ℓµ(c), and the second inequality always holds if ℓ = 0.

For labelled paths, we need some extra steps.

Definition 3.14. We define the temporary dinv of a labelled rectangular path (π,w) as

tdinv(π) := #{1 ⩽ i, j ⩽ n | wi < wj and i attacks j}.

Definition 3.15. We define the maximal temporary dinv of a rectangular path π as

maxtdinv(π) := #{1 ⩽ i, j ⩽ n | i attacks j}.

Note that this is the same as max{tdinv(π,w) | w ∈ W (π)}, where W (π) is the set of all
possible labellings of π.
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The following is a simpler description for the difference pdinv(π) − maxtdinv(π), given
in [HL15].

Definition 3.16. We define the dinv correction of a rectangular path π as

cdinv(π) := #
{
c ∈ µ(π) | a+1

ℓ+1
⩽ m

n
< a

ℓ

}
−#

{
c ∈ µ(π) | a

ℓ
⩽ m

n
< a+1

ℓ+1

}
,

where a = aµ(c) and ℓ = ℓµ(c).

We will provide a visual interpretation for the tdinv and cdinv later in the section.

Theorem 3.17 ([HL15, Theorem 2]). For any rectangular Dyck path π, we have

cdinv(π) = pdinv(π)−maxtdinv(π).

We extend this result to all rectangular paths, without the restriction of lying above the main
diagonal.

Theorem 3.18. For any rectangular path π, we have

cdinv(π) = pdinv(π)−maxtdinv(π)−#{i | ai(π) < 0} −#
{
i | ai(π) < −m

n

}
.

Proof. Let π′ be the path obtained from π by adding n North steps at the beginning
and m East steps at the end. By construction, µ(π′) = µ(π) and the slope is the same, so
cdinv(π′) = cdinv(π). By Theorem 3.17, this quantity is also equal to pdinv(π′)−maxtdinv(π′).
But again, pdinv(π) only depends on µ(π), so pdinv(π′) = pdinv(π).

We only need to compare maxtdinv(π) and maxtdinv(π′). It is immediate that (i, j) is an
attack relation in π if and only if (n + i, n + j) is an attack relation in π′, so we only need to
count attack relations in π′ where either i ⩽ n or j ⩽ n. Since the first n steps of π′ are all North
steps by construction, we cannot possibly have attack relations where both i and j are at most n.

We have that, whenever ai(π) < 0 (i.e. the corresponding North step begins strictly
below the main diagonal), n + i is attacked exactly once in π′ by some j ⩽ n. In fact, we
have 0 ⩽ an+i(π

′) = m + ai(π) < m, and since aj(π
′) = m

n
(j − 1) for j ⩽ n, there ex-

ists exactly one j such that m
n
(j − 1) ⩽ an+i(π

′) < m
n
j (which is exactly the attack relation,

as j < n+ i).
For the same reason, whenever ai(π) < −m

n
(i.e. the corresponding North step ends

strictly below the main diagonal), n + i attacks exactly one j ⩽ n in π′. In fact, if that is the
case, we have an+i(π

′) = m + ai(π) ⩽ m
n
(n − 1), so there exists exactly one j such

that an+i(π
′) < m

n
(j − 1) ⩽ an+i(π

′) + m
n
j (which is exactly the attack relation, as n+ i > j).

Summarising, we have

cdinv(π) = cdinv(π′)

= pdinv(π′)−maxtdinv(π′)

= pdinv(π)−maxtdinv(π′)

= pdinv(π)−maxtdinv(π)−#{i | ai(π) < 0} −#
{
i | ai(π) < −m

n

}
as desired.
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Note that the term #{i | ai(π) < 0} counts the number of North steps of the path that begin
below the main diagonal, in the same fashion as in the tertiary dinv (or bonus dinv) for square
paths [LW07, Ser17]. To obtain a unified definition of dinv of rectangular paths that matches
the expected symmetric functions, it turns out that we have to keep that term and disregard the
term #{i | ai(π) < −m

n
}. This finally leads us to the following definition.

Definition 3.19. We define the dinv of a labelled rectangular path (π,w) as

dinv(π,w) := tdinv(π,w) + cdinv(π) + #{i | ai(π) < 0}.

We now give a visual interpretation of the various summands.
The temporary dinv counts all pairs of North steps (i, j) such that wi < wj and the j-th

North step begins between the line y = n
m
(x + ai) and the line y = n

m
(x + ai) + 1, with ties

broken by comparing i and j. In Figure 3.4, we have drawn these two lines for all North steps
of the path and marked the beginnings of North steps contained between them and that satisfy
the condition on the label. We see that the contribution to the dinv is 4.

The dinv correction is split into two parts. The first summand counts the number of cells c
above the path such that the two lines parallel to the main diagonal and starting from the end-
points of the East step below c both intersect the North step to the right of c (bottom endpoint
excluded, but top endpoint included). The second summand counts the number of cells c above
the path such that the two lines parallel to the main diagonal and starting from the endpoints of
the North step to the right of c both intersect the East step below c (right endpoint included, but
left endpoint excluded). Notice that the two sets cannot simultaneously be non-empty, the first
one being empty if m ⩽ n and the second one being empty if m ⩾ n. In Figure 3.4, we have a
path of size 5× 7 so the first term is 0. We have greyed out the cells counted in the second term,
giving a contribution to the dinv of −4.

The bonus dinv, as previously mentioned, counts the number of North steps of the path that
begin below the main diagonal. In Figure 3.4 there are 3 North steps starting below the main
diagonal.

Thus the path in Figure 3.4 has dinv equal to 3.

4. Conjectures

With the previous definitions in mind, we can state the rectangular shuffle theorem [Mel21] and
several new conjectures, which were verified by computer for all paths with semiperimeterm+n
up to 13.

Theorem 4.1. [Mel21] For any m,n ∈ N, we have

em,n =
∑

π∈LRD(m,n)

qdinv(π)tarea(π)xπ.

Conjecturally, we extend this result to rectangular paths, as follows.
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Figure 3.4: Calculation of the dinv of a rectangular square path.
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Figure 4.1: The set of 2 × 3 standard rectangular paths, with their dinv (in blue) and area (in
red).

Conjecture 4.2. For any m,n ∈ N, and d = gcd(m,n), we have

[m]q
[d]q

pm,n =
∑

π∈LRP(m,n)

qdinv(π)tarea(π)xπ.

Example 4.3. Let m = 2 and n = 3. In Conjecture 4.2, we can check for example that the
Hilbert series (that is, the scalar product with h1n) coincides with the sum over all 2×3 standard
rectangular paths of the monomial qdinv(π)tarea(π). In fact, we have

[2]q
[1]q

⟨p2,3, h13⟩ = (1 + q)(q + t+ 2) = 1 + q + 1 + t+ q + q2 + q + qt,

which coincides with the values in Figure 4.1.

We also have (univariate) analogues of the Delta conjecture and the Delta square conjecture
for rectangular (Dyck) paths, using Theta operators.

Conjecture 4.4. For any m,n ∈ N, we have

Θekem,n|q=1 =
∑

π∈LRD(m+k,n+k)∗k

tarea(π)xπ.

Conjecture 4.5. For any m,n ∈ N, and d = gcd(m,n), we have

[m+ k]q
[d]q

Θekpm,n

∣∣∣∣
q=1

=
∑

π∈LRP(m+k,n+k)∗k

tarea(π)xπ.
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Figure 4.2: The set of 3×4 standard rectangular Dyck paths with two decorated rises, with their
area.

See Figure 4.2 for the case m = 1, n = 2, k = 2: indeed

⟨Θe2e2,1, h14⟩|q=1 = t2 + 5t+ 11,

which coincides with the combinatorial expression.
These conjectures bring with them a natural open problem.

Problem 4.6. Find a statistic qstat : LRP(m+ k, n+ k)∗k → N such that

Θekem,n =
∑

π∈LRD(m+k,n+k)∗k

qqstat(π)tarea(π)xπ

and
[m+ k]q

[d]q
Θekpm,n =

∑
π∈LRP(m+k,n+k)∗k

qqstat(π)tarea(π)xπ.

Unlike in the square case, simply ignoring the decorations on the rises to compute the dinv
does not give the expected qstat.

5. The sweep process

In this section, we show that the sweep process in [Mel21, Subsection 4.1] also gives the correct
outcome for rectangular paths, without the restriction of staying above the main diagonal.
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l
↓

Figure 5.1: The sweeping line.

We refer to [Mel21, Proposition 3.3] for the definitions of the operators d+ and d−, to [Mel21,
Subsection 3.5] for the definition of the characteristic function of a Dyck path with a marking,
and to [Mel21, Section 4] and the first paragraph of [Mel21, Theorem 4.2] for how they relate
to the following sweep process. We do not report all the definitions here because we are only
interested in certain combinatorial properties of the sweep process and how they change between
rectangular Dyck paths and rectangular paths, rather than in the process itself, but we encourage
the interested reader to compare Theorem 5.2 and [Mel21, Theorem 4.2].

Definition 5.1 (Sweep process). For π ∈ RP(m,n), define sweep(π) through the algorithm that
follows. Initialize φ = 1 ∈ V0. Consider a line l with slope n

m
− ϵ, with ϵ < 1

(2mn)2
(so that it

“breaks ties” but does not change the order in which the lattice points are hit with respect to a
line with slope m

n
), which stays fully above π (see Figure 5.1). Move l downward and modify φ

every time l passes through a lattice point p weakly below π and different from (m,n). At each
lattice point p, modify φ as follows:

(A) if p is between a NE pair of steps, apply d+;

(B) if p is between an EN pair of steps, or p = (0, 0) and the path starts with a N step, apply
d−;

(C) if p is between a NN pair of steps, apply q−a d−d+−d+d−
q−1

, where a is the number of vertical
steps of π crossed by l to the right of p;

(D) if p is between an EE pair of steps, or p = (0, 0) and the path starts with an E step, multiply
by qa (where a is defined as in the previous case);

(E) if p is strictly below π, multiply by t.

The algorithm stops when l is entirely below the path π.
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start with 1 (A) apply d+ (A) apply d+ (A) apply d+

(D) multiply by q0 (B) apply d− (B) apply d− (D) multiply by q0

(C) apply q−0 [d−,d+]
q−1

(E) multiply by t (A) apply d+ (E) multiply by t

(D) multiply by q2 (E) multiply by t (E) multiply by t (B) apply d−

(E) multiply by t (B) apply d− done!
Figure 5.2: The sweeping process.

See Figure 5.2 for an illustration of the sweeping process, with final result

q2t5d−d−d+
[d−, d+]

q − 1
d−d−d+d+d+(1).

Theorem 5.2. For π any rectangular path, we have

sweep(π) = tarea(π)
∑

w∈W (π)

qdinv(π,w)xw,

where W (π) is the set of possible labellings of π.
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Proof. As in [Mel21, Theorem 4.2], plotting the attack relations gives a Dyck path π̃ with a set
of marked corners Σπ such that

χ(π̃,Σπ) =
∑

w∈W (π)

qtdinv(π,w)xw,

where χ(π̃,Σπ) is the characteristic function of a Dyck path (see [Mel21, Subsection 3.5]) and
such that χ(π̃,Σπ) is the result of the operations (A), (B), and (C) without the factor q−a.

It is also clear that operation (E) gives tarea(π), so all that is left to show is that the power of q
produced by rules (C) and (D) equals

+#
{
c ∈ µ(π) | a+1

ℓ+1
⩽ m

n
< a

ℓ

}
−#

{
c ∈ µ(π) | a

ℓ
⩽ m

n
< a+1

ℓ+1

}
+#{i | ai < 0}.

Let us again define π′ to be the path obtained from π by adding n North steps at the begin-
ning, and m East steps at the end. Since π′ is a rectangular Dyck path, by the proof of [Mel21,
Theorem 4.2] we know that the power of q produced by rules (C) and (D) equals cdinv(π′), which
is also equal to cdinv(π) as it only depends on µ(π′) = µ(π).

We need to compare the power of q produced by rules (C) and (D) applied to π′ and π. The
result is the same for lattice points in between steps of π′ that were already in π, as we are not
adding any North step to their right. For the lattice points in between the last m East steps of π′,
the exponent of q is always 0, as their corresponding value of a is 0.

For the lattice points in between the first n steps of π′, we have to apply rule (C), so their
total contribution is equal to minus the number of North steps of π′ intersected by any line with
slope n

m
− ε starting from (0, j) for some j < n, which is exactly the number of North steps of π

finishing strictly below the main diagonal, that is, the number of i such that ai(π) < −m
n

.
Finally, the point (0, n) in π switches from rule (D) to rule (A), or from rule (B) to rule (C),

depending on whether π starts with an East or a North step respectively; in either case, the
difference between its contributions in π′ and in π is given by minus the number of North steps
of π that are crossed by the line with slope n

m
−ε starting from (0, 0), which is exactly the number

of i such that −m
n
⩽ ai(π) < 0.

In total, we get that the difference in the exponents of q produced by rules (C) and (D) applied
to π′ and π is −#{i | ai(π) < 0}, so we have

sweep(π) = tarea(π)qcdinv(π)q#{i|ai(π)<0}
∑

w∈W (π)

qtdinv(π,w)xw = tarea(π)
∑

w∈W (π)

qdinv(π,w)xw,

as desired.

6. The coprime case

In this section, we prove Conjecture 4.2 in the coprime case:

Theorem 6.1. If gcd(m,n) = 1, then

[m]q pm,n =
∑

π∈LRP(m,n)

qdinv(π)tarea(π)xπ.
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Proof. Since gcd(m,n) = 1, we have em,n = pm,n = Fm,n(e1). Therefore, in order to prove
Theorem 6.1, it is enough to show that the set of (unlabelled) rectangular paths RP(m,n) can
be partitioned into subsets P1, . . . ,Ph of cardinality m such that:

(1) each Pi contains exactly one Dyck path π0 ∈ RD(m,n);

(2) for eachPi and 0 ⩽ k < m, there exists a (unique) element πk ∈ Pi such that sweep(πk) =
qksweep(π0).

Indeed, if such a partition exists, then

[m]q pm,n = [m]q em,n = [m]q
∑

π∈LRD(m,n)

qdinv(π)tarea(π)xπ

= [m]q
∑

π∈RD(m,n)

sweep(π)

=
∑

π∈RP(m,n)

sweep(π)

=
∑

π∈LRP(m,n)

qdinv(π)tarea(π)xπ,

where we used Theorem 4.1 in the first line, Theorem 5.2 in the second line, the partition
RP(m,n) = P1 ⊔ · · · ⊔ Ph in the third line, and Theorem 5.2 again in the fourth line.

Next, we construct a partition of RP(m,n) with the desired properties. Consider an (un-
labelled) rectangular path π ∈ RP(m,n). Denote by di ∈ Q the signed horizontal distance
between the endpoint of the i-th horizontal step of π and the main diagonal (for 0 ⩽ i < k). Fix
now an integer k with 0 ⩽ k < m. The k-th horizontal step divides the path π into two parts π0

and π1, where π1 starts immediately after the k-th horizontal step and π0 ends with the k-th
horizontal step. Define the path ϕ(π) = ϕk(π) as the concatenation of π1 followed by π0 (we
fix ϕ0 = id). Also, let

r(π) = rk(π) =

{
# {i | dk > di ⩾ 0} if dk ⩾ 0

−# {i | 0 ⩾ di > dk} if dk < 0,

that is, up to a sign, the number of horizontal steps whose endpoint lies between the main di-
agonal and the diagonal parallel to it that passes through the endpoint of the k-th horizontal
step.

We partition RP(m,n) as follows. If π ∈ RD(m,n) is the i-th Dyck path, define
Pi = {ϕk(π) | 0 ⩽ k < m}. The sets P1, . . . ,Ph form a partition of RP(m,n). Since
gcd(m,n) = 1, Pi contains no Dyck path other than π, so the partition satisfies property (1)
above. By definition of rk, we have that {rk(π) | 0 ⩽ k < m} = {0, 1, . . . ,m − 1}. See Fig-
ure 6.1 for an example. Then the partition satisfies property (2) thanks to Lemma 6.2 below.

Lemma 6.2. If gcd(m,n) = 1, then sweep(ϕk(π)) = qrk(π)sweep(π).
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2

4 1

3 0

π = ϕ0(π) : dinv = 7

ϕ3(π) : dinv = 8 ϕ1(π) : dinv = 9 ϕ4(π) : dinv = 10 ϕ2(π) : dinv = 11

Figure 6.1: A rectangular Dyck path π and ϕk(π) for all 0 ⩽ k < m. The horizontal steps of π
are marked by integers indicating their order with respect to the distance between their endpoint
and the main diagonal.

Proof. Since k is fixed, we will write ϕ(π) and r(π) in place of ϕk(π) and rk(π) throughout
the proof. The relative order of points in π and their images in ϕ(π) does not change when
performing the sweep process. Therefore,

sweep(ϕ(π))

qa(ϕ(π))
=

sweep(π)

qa(π)
,

where a(π) is the exponent of q obtained by applying the sweep process. To conclude, we need
to show that a(ϕ(π)) = a(π) + r(π).

Define Aπ, Bπ, Cπ, Dπ as the sets of lattice points of π, different from the point (m,n), that
are between a NE, EN , NN , EE pair of steps respectively. We consider the point (0, 0) to be
preceded by a virtual East step, so (0, 0) ∈ Bπ or (0, 0) ∈ Dπ if the first step is a North or an
East step respectively.

Let p be a lattice point of π. Define a(p) ∈ Z as the number of vertical steps that intersect
the ray ρ(p) := {p+ u · (m,n) | u ∈ R+}, multiplied by the following coefficient ϵ(p):

ϵ(p) =


0 if p ∈ Aπ ∪Bπ

−1 if p ∈ Cπ

1 if p ∈ Dπ.

By construction, we have that a(π) =
∑

p∈π aπ(p).
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For a lattice point p of π, denote by l = l(p) ∈ {0, 1} the index such that p is a point of πl. For
this purpose, the right endpoint of the k-th horizontal step is considered as a lattice point of π1

(not π0), whereas (m,n) is not considered as a lattice point of π1 (nor of π). Define a′(p) ∈ Z
as the number of vertical steps of π1−l that intersect the line λ(p) := {p + u · (m,n) | u ∈ R},
multiplied by the following coefficient ϵ′(p):

ϵ′(p) =


0 if p ∈ Aπ ∪Bπ

(−1)l if p ∈ Cπ

(−1)l+1 if p ∈ Dπ.

In other words: a′(p) vanishes if p ∈ Aπ ∪ Bπ; otherwise, |a′(p)| is equal to the number of
intersections between the line λ(p) and vertical steps in the part of the path not containing p.

Claim 1: a(ϕ(π))− a(π) =
∑
p∈π

a′(p).

The intersections between rays ρ(p) = {p+ u · (m,n) | u ∈ R+} and vertical steps in πl(p)

are counted in both a(ϕ(π)) and a(π) (with the same sign), so they simplify.
The remaining summands in a(ϕ(π)) count the intersections between rays ρ(p), where p

is in π1, and vertical steps in π0 (where π0 is translated by (m,n) so that it starts from (m,n)).
Equivalently, they count the intersections between lines λ(p) (where p is in π1) and vertical steps
in π0 (not translated). Therefore, their contribution is given by

∑
p∈π1

a′(p). Note that the points
in Cπ get a negative sign, as in the definition of aπ(p).

The remaining summands in a(π) count the intersections between rays ρ(p), where p is
in π0, and vertical steps in π1. Since π1 comes after π0, we can substitute the rays ρ(p) with
the lines λ(p). Their contribution is given by

∑
p∈π0

a′(p).

Intermezzo: We refer to a maximal sequence of consecutive North steps as a vertical segment.
Each point in Dπ (i.e., between two East steps) is considered as a vertical segment of length 0.
This way, the path π0 has k vertical segments with x coordinates equal to 0, . . . , k − 1, and the
path π1 has m − k vertical segments with x coordinates k, . . . ,m − 1. Denote by Si the i-th
vertical segment.

It is convenient to translate each vertical segment Si along the line {u · (m,n) | u ∈ R} so
that its x coordinate becomes 0. We denote this translated segment by Ti. Let yi and y′i be the y
coordinates of the endpoints of Ti, with yi ⩽ y′i. Therefore, the y coordinates of Si are yi+ i · n

m

and y′i + i · n
m

. Note that the endpoints of the Ti’s are all distinct because m and n are coprime.

Claim 2:
∑
p∈π

a′(p) =
∑
i<k

∑
j⩾k

(δTi⊃Tj
− δTi⊂Tj

).

Let us analyze the contributions to the left-hand side due to the i-th and j-th vertical seg-
ments, for fixed i < k and j ⩾ k. Let h be the number of lattice points p ∈ Si (including the
endpoints of Si) such that λ(p) intersects the j-th vertical segment Sj .

If Ti ⊃ Tj , then Sj has length h and, for all its h + 1 points p′, the line λ(p′) intersects Si.
Once we exclude the endpoints, h− 1 points remain. On the other hand, the endpoints of Si are
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not among the h points p ∈ Si such that λ(p) intersects Sj . The overall contribution of Si and Sj

to the left-hand side is h− (h− 1) = +1.
Note that if Ti ⊃ Tj and h = 0, then Sj is a single point p′ ∈ Dπ such that λ(p′) intersects Si,

so it contributes to the left-hand side as +1. In other words, vertical segments of length 0 can
still be regarded as having h− 1 = −1 lattice points other than the endpoints.

Similarly, if Ti ⊂ Tj , then the contribution is −1. Finally, if neither of Ti and Tj contains
the other, Sj also has h points p′ such that λ(p′) intersects Si, so the contribution is 0.

Claim 3: δTi⊃Tj
− δTi⊂Tj

= δyi<yj − δyi+1<yj+1
(where we set ym = 0).

Clearly, we have δTi⊃Tj
− δTi⊂Tj

= δyi<yj − δy′i<y′j
. The top endpoint of Si has the same y

coordinate as the bottom endpoint of Si+1, so y′i = yi+1 + n
m

. Similarly, y′j = yj+1 + n
m

,
so δy′i<y′j

= δyi+1<yj+1
.

Claim 4:
∑
i<k

∑
j⩾k

(δyi<yj − δyi+1<yj+1
) = r(π).

Write δi,j as a shorthand for δyi<yj . The left-hand side simplifies to∑
k⩽j<m

δ0,j +
∑
0<i<k

δi,k −
∑

k<j⩽m

δk,j −
∑
0<i<k

δi,m = 1 +
∑

0⩽i<m

(δ0,i + δi,k − 1), (6.1)

where we have used the facts that ym = y0 = 0 and δi,j = 1− δj,i for i ̸= j.
If yk > 0, the final summation in (6.1) counts the horizontal steps of π whose right endpoint

lies strictly between the main diagonal and the translated diagonal {yk + u · (m,n) | u ∈ R}.
The +1 term can be interpreted as counting the final horizontal step which ends on the main
diagonal.

If yk < 0, the final summation in (6.1) counts the same points with a negative sign but also
has a −2 coming from the terms i = 0 and i = k (because δ0,k = 0). Then −2+1 = −1 counts
the final horizontal step with a negative sign. In all cases, the result is exactly r(π).

This completes the proof of Theorem 6.1.
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