Atomtronics deals with matter-wave circuits of ultracold atoms manipulated through magnetic or laser-generated guides with different shapes and intensities. In this way, new types of quantum networks can be constructed in which coherent fluids are controlled with the know-how developed in the atomic and molecular physics community. In particular, quantum devices with enhanced precision, control, and flexibility of their operating conditions can be accessed. Concomitantly, new quantum simulators and emulators harnessing on the coherent current flows can also be developed. Here, the authors survey the landscape of atomtronics-enabled quantum technology and draw a roadmap for the field in the near future. The authors review some of the latest progress achieved in matter-wave circuits' design and atom-chips. Atomtronic networks are deployed as promising platforms for probing many-body physics with a new angle and a new twist. The latter can be done at the level of both equilibrium and nonequilibrium situations. Numerous relevant problems in mesoscopic physics, such as persistent currents and quantum transport in circuits of fermionic or bosonic atoms, are studied through a new lens. The authors summarize some of the atomtronics quantum devices and sensors. Finally, the authors discuss alkali-earth and Rydberg atoms as potential platforms for the realization of atomtronic circuits with special features.

Amico L., Boshier M., Birkl G., Minguzzi A., Miniatura C., Kwek L.-C., et al. (2021). Roadmap on Atomtronics: State of the art and perspective. AVS QUANTUM SCIENCE, 3(3), 1-105 [10.1116/5.0026178].

Roadmap on Atomtronics: State of the art and perspective

Piroli L.;
2021

Abstract

Atomtronics deals with matter-wave circuits of ultracold atoms manipulated through magnetic or laser-generated guides with different shapes and intensities. In this way, new types of quantum networks can be constructed in which coherent fluids are controlled with the know-how developed in the atomic and molecular physics community. In particular, quantum devices with enhanced precision, control, and flexibility of their operating conditions can be accessed. Concomitantly, new quantum simulators and emulators harnessing on the coherent current flows can also be developed. Here, the authors survey the landscape of atomtronics-enabled quantum technology and draw a roadmap for the field in the near future. The authors review some of the latest progress achieved in matter-wave circuits' design and atom-chips. Atomtronic networks are deployed as promising platforms for probing many-body physics with a new angle and a new twist. The latter can be done at the level of both equilibrium and nonequilibrium situations. Numerous relevant problems in mesoscopic physics, such as persistent currents and quantum transport in circuits of fermionic or bosonic atoms, are studied through a new lens. The authors summarize some of the atomtronics quantum devices and sensors. Finally, the authors discuss alkali-earth and Rydberg atoms as potential platforms for the realization of atomtronic circuits with special features.
2021
Amico L., Boshier M., Birkl G., Minguzzi A., Miniatura C., Kwek L.-C., et al. (2021). Roadmap on Atomtronics: State of the art and perspective. AVS QUANTUM SCIENCE, 3(3), 1-105 [10.1116/5.0026178].
Amico L.; Boshier M.; Birkl G.; Minguzzi A.; Miniatura C.; Kwek L.-C.; Aghamalyan D.; Ahufinger V.; Anderson D.; Andrei N.; Arnold A.S.; Baker M.; Bel...espandi
File in questo prodotto:
File Dimensione Formato  
039201_1_online.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 9.44 MB
Formato Adobe PDF
9.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 110
  • ???jsp.display-item.citation.isi??? ND
social impact