The Mycobacterium tuberculosis low-molecular weight protein tyrosine phosphatase (MptpA) is responsible for the inhibition of phagosome-lysosome fusion and is essential for the bacterium patho-genicity. This inhibition implies that M. tuberculosis is not exposed to a strongly acidic environment in vivo, enabling successful propagation in host cells. Remarkably, MptpA has been previously structurally and functionally investigated, with special emphasis devoted to the enzyme properties at pH 8.0. Considering that the virulence of M. tuberculosis is strictly dependent on the avoidance of acidic con-ditions in vivo, we analysed the pH-dependence of the structural and catalytic properties of MptpA. Here we show that this enzyme undergoes pronounced conformational rearrangements when exposed to acidic pH conditions, inducing a severe decrease of the enzymatic catalytic efficiency at the expense of phosphotyrosine (pTyr). In particular, a mild decrease of pH from 6.5 to 6.0 triggers a significant increase of K0.5 of MptpA for phosphotyrosine, the phosphate group of which we determined to feature a pKa2 equal to 5.7. Surface plasmon resonance experiments confirmed that MptpA binds poorly to pTyr at pH values < 6.5. Notably, the effectiveness of the MptpA competitive inhibitor L335-M34 at pH 6 does largely outperform the inhibition exerted at neutral or alkaline pH values. Overall, our observations indicate a pronounced sensitivity of MptpA to acidic pH conditions, and suggest the search for competitive in-hibitors bearing a negatively charged group featuring pKa values lower than that of the substrate phosphate group.

Kovermann M., Stefan A., Palazzetti C., Immler F., Dal Piaz F., Bernardi L., et al. (2023). The Mycobacterium tuberculosis protein tyrosine phosphatase MptpA features a pH dependent activity overlapping the bacterium sensitivity to acidic conditions. BIOCHIMIE, 213, 66-81 [10.1016/j.biochi.2023.04.014].

The Mycobacterium tuberculosis protein tyrosine phosphatase MptpA features a pH dependent activity overlapping the bacterium sensitivity to acidic conditions

Stefan A.;Bernardi L.;Hochkoeppler A.
2023

Abstract

The Mycobacterium tuberculosis low-molecular weight protein tyrosine phosphatase (MptpA) is responsible for the inhibition of phagosome-lysosome fusion and is essential for the bacterium patho-genicity. This inhibition implies that M. tuberculosis is not exposed to a strongly acidic environment in vivo, enabling successful propagation in host cells. Remarkably, MptpA has been previously structurally and functionally investigated, with special emphasis devoted to the enzyme properties at pH 8.0. Considering that the virulence of M. tuberculosis is strictly dependent on the avoidance of acidic con-ditions in vivo, we analysed the pH-dependence of the structural and catalytic properties of MptpA. Here we show that this enzyme undergoes pronounced conformational rearrangements when exposed to acidic pH conditions, inducing a severe decrease of the enzymatic catalytic efficiency at the expense of phosphotyrosine (pTyr). In particular, a mild decrease of pH from 6.5 to 6.0 triggers a significant increase of K0.5 of MptpA for phosphotyrosine, the phosphate group of which we determined to feature a pKa2 equal to 5.7. Surface plasmon resonance experiments confirmed that MptpA binds poorly to pTyr at pH values < 6.5. Notably, the effectiveness of the MptpA competitive inhibitor L335-M34 at pH 6 does largely outperform the inhibition exerted at neutral or alkaline pH values. Overall, our observations indicate a pronounced sensitivity of MptpA to acidic pH conditions, and suggest the search for competitive in-hibitors bearing a negatively charged group featuring pKa values lower than that of the substrate phosphate group.
2023
Kovermann M., Stefan A., Palazzetti C., Immler F., Dal Piaz F., Bernardi L., et al. (2023). The Mycobacterium tuberculosis protein tyrosine phosphatase MptpA features a pH dependent activity overlapping the bacterium sensitivity to acidic conditions. BIOCHIMIE, 213, 66-81 [10.1016/j.biochi.2023.04.014].
Kovermann M.; Stefan A.; Palazzetti C.; Immler F.; Dal Piaz F.; Bernardi L.; Cimone V.; Bellone M.L.; Hochkoeppler A.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0300908423000913-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.68 MB
Formato Adobe PDF
3.68 MB Adobe PDF Visualizza/Apri
1-s2.0-S0300908423000913-mmc1.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941522
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact