There are contrasting views on how to produce the accurate predictions that are needed to guide climate change adaptation. Here, we argue for harnessing artificial intelligence, building on domain-specific knowledge and generating ensembles of moderately high-resolution (10–50 km) climate simulations as anchors for detailed hazard models.

Schneider, T., Behera, S., Boccaletti, G., Deser, C., Emanuel, K., Ferrari, R., et al. (2023). Harnessing AI and computing to advance climate modelling and prediction. NATURE CLIMATE CHANGE, 13(9), 887-889 [10.1038/s41558-023-01769-3].

Harnessing AI and computing to advance climate modelling and prediction

Giulio Boccaletti;Antonio Navarra;
2023

Abstract

There are contrasting views on how to produce the accurate predictions that are needed to guide climate change adaptation. Here, we argue for harnessing artificial intelligence, building on domain-specific knowledge and generating ensembles of moderately high-resolution (10–50 km) climate simulations as anchors for detailed hazard models.
2023
Schneider, T., Behera, S., Boccaletti, G., Deser, C., Emanuel, K., Ferrari, R., et al. (2023). Harnessing AI and computing to advance climate modelling and prediction. NATURE CLIMATE CHANGE, 13(9), 887-889 [10.1038/s41558-023-01769-3].
Schneider, Tapio; Behera, Swadhin; Boccaletti, Giulio; Deser, Clara; Emanuel, Kerry; Ferrari, Raffaele; Ruby Leung, L.; Lin, Ning; Müller, Thomas; Nav...espandi
File in questo prodotto:
File Dimensione Formato  
Nature-CC-edits-06-23-2023 TS.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 295.49 kB
Formato Adobe PDF
295.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/941359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact