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There	are	contrasting	views	on	how	to	produce	the	accurate	predictions	that	are	
needed	to	guide	climate	change	adaptation.	Here,	we	argue	for	harnessing	AI,	
building	on	domain-specific	knowledge,	and	generating	ensembles	of	moderately	
high-resolution	(10–50	km)	climate	simulations,	as	anchors	for	detailed	hazard	
models.	

Adaptation	planners,	local	decision	makers	and	industries	are	demanding	detailed	
assessments	of	climate	risks1,	which	necessitate	large	ensembles	of	climate	simulations2.	
However,	climate	models	struggle	to	provide	the	needed	granular	predictions	with	
quantified	uncertainties.	A	step	change	in	the	accuracy	and	usability	of	climate	predictions	
is	needed.	

One	proposed	approach	for	a	step	change	in	climate	modeling	is	to	focus	on	global	models	
with	1	km	horizontal	resolution,	which	can	improve	simulations,	for	example,	of	
atmospheric	convective	storms	and	the	resulting	extreme	precipitation3,4	.	However,	
because	kilometer-scale	models	stretch	the	limits	of	what	is	computationally	feasible,	only	
a	few	simulations	can	be	generated	with	kilometer-scale	models,	primarily	in	select	centers	



in	the	Global	North.	An	alternative	approach	increases	the	model	resolution	to	10–50	km	
(relative	to	around	100	km	that	are	standard	today)	and	focuses	on	calibration	with	Earth	
observations	and	higher-resolution	regional	simulations	using	AI	tools5.	This	enables	the	
generation	of	large	ensembles	to	quantify	uncertainties	and	support	detailed	impact	
assessments	using	offline	hazard	models.	We	argue	that	a	balanced	approach,	
incorporating	higher-resolution	modeling,	AI,	and	learning	from	observational	and	
simulated	data,	offers	the	most	robust	path	to	accurate	climate	risk	assessments.		

Kilometer-scale Models 

Climate	models	with	a	horizontal	resolution	around	1	km	are	appealing	because	their	
resolution	closely	matches	the	scale	at	which	many	climate	risk	assessments	are	needed.	
They	promise	to	reduce	errors,	for	example,	in	simulations	of	regional	precipitation	and	its	
extremes3,4.		

However,	while	kilometer-scale	models	have	been	referred	to	as	"digital	twins"	of	Earth3,	
they	still	have	limitations	and	biases	similar	to	current	models.	They	fail	to	capture	
important	sub-kilometer	scale	processes,	such	as	the	dynamics	of	the	energetically	crucial	
low-lying	clouds6,	which	operate	at	scales	of	1–10	m.	They	are	far	from	resolving	
atmospheric	turbulence,	which	occupies	a	continuum	of	scales	from	the	planetary	scale	to	
the	dissipation	(Kolmogorov)	scale	of	around	1	mm.	Therefore,	although	an	atmosphere	
model	with	1	km	horizontal	resolution	and	200	vertical	levels	would	have	10!!	spatial	
degrees	of	freedom,	this	is	a	factor	10!'	less	than	the	turbulence	in	Earth’s	atmosphere.	
Furthermore,	below	the	smallest	turbulent	scales	operate	processes	that	contribute	to	
major	uncertainties	in	climate	predictions.	Cloud	microphysical	processes,	controlling	the	
formation	of	of	cloud	droplets	and	ice	crystals	and	occurring	on	nano-	and	micrometer	
scales,	regulate	Earth’s	energy	balance.	Uncertainties	in	their	representation	contribute	
substantially	to	the	divergent	sensitivities	of	climate	models	to	increasing	greenhouse	gas	
concentrations7.	Errors	in	the	representation	of	such	small-scale	processes	percolate	
upscale	and	lead	to	biases	in	a	model’s	large-scale	energy	balance	and	simulated	features	
such	as	precipitation	patterns.		

Thus,	because	kilometer-scale	models	do	not	resolve	many	crucial	small-scale	processes,	
they	exhibit	some	of	the	same	large-scale	biases—for	example,	in	tropical	rainfall	
patterns—that	have	plagued	coarser-resolution	models	for	decades8.	Accuracy	gains	in	
going	from	10	km	to	1	km	resolution	so	far	have	been	incremental9,	and	the	intensity	of	
convective	storms	has	not	reached	convergence	at	kilometer	resolution10.	In	fact,	without	
calibration,	large-scale	biases	can	be	larger	at	higher	than	at	lower	resolution.		

Overall,	kilometer-scale	models	do	not	offer	the	step	change	in	accuracy	that	would	justify	
accepting	the	limitations	they	impose	on	the	size	of	simulation	ensembles,	which	are	
needed	both	to	calibrate	the	unavoidable	empirical	models	of	unresolved	processes	and	to	
quantify	uncertainties.			



Harnessing AI and Data to Improve Earth Systems Models 
Rather	than	prioritizing	kilometer-scale	resolution,	we	propose	a	balanced	approach	that	
capitalizes	on	advances	in	computing	and	AI.	By	moderately	increasing	global	resolution	
while	extensively	harnessing	observational	and	simulated	data,	this	approach	is	more	
likely	to	achieve	the	objective	of	climate	modeling	for	risk	assessment,	which	involves	
minimizing	model	errors	and	quantifying	uncertainties.	Model	resolution	is	no	panacea	but	
one	of	several	parameters	to	be	optimized	in	pursuit	of	this	objective.	It	serves	as	a	potent	
lever	for	optimization	because	computational	cost	scales	cubically	with	horizontal	
resolution	when	vertical	resolution	is	fixed:	1000	simulations	at	10-km	resolution	cost	the	
same	as	one	simulation	at	1-km	resolution.	Transitioning	to	global	resolutions	around	10	
km	would	represent	a	significant	improvement	over	current	standards,	while	still	enabling	
the	generation	of	large	ensembles.	These	ensembles	are	essential	for	quantifying	
uncertainties	and	leveraging	AI	tools	to	learn	from	data	about	crucial	small-scale	processes,	
such	as	cloud	dynamics	and	microphysics,	which	cannot	be	directly	resolved.		

Because	climate	predictions	focus	on	statistical	quantities	such	as	mean	temperatures	or	
probabilities	of	extreme	precipitation	events,	it	is	natural	to	learn	about	unresolvable	
processes	in	models	from	climate	statistics	accumulated	over	time5;	this	contrasts	with	the	
assimilation	of	weather	states	in	weather	forecasting	(see	Box	1	for	crucial	differences	
between	weather	forecasting	and	climate	prediction).	The	relatively	smooth	spatial	and	
temporal	variation	of	climate	statistics	also		helps	mitigate	challenges	stemming	from	
resolution	disparities	between	simulations	and	observations.		

However,	learning	from	climate	statistics	using	AI	tools	poses	its	own	challenges:	

• The	widely	adopted	machine	learning	(ML)	paradigm	of	supervised	learning,	which	
typically	relies	on	model	gradients	for	training,	is	too	restrictive	because	it	requires	
direct	training	data	at	the	level	of	the	processes	to	be	learned.	However,	climate	data	
(e.g.,	cloud	cover	statistics)	usually	only	provide	indirect	information	about	the	
processes	to	be	learned	(e.g.,	cloud	microphysics).	

• Learning	from	statistics	such	as	multi-year	averages	or	the	seasonal	cycle	requires	
accumulating	simulated	statistics	over	years	to	decades,	making	the	training	stage	
computationally	expensive.	

These	challenges	can	be	met.	Ensemble	Kalman	methods,	widely	employed	for	state	
assimilation	in	weather	forecasting,	can	be	adapted	to	learn	about	parameters,	parametric	
functions,	or	even	ML	components	of	climate	models	by	solving	inverse	problems5,11.	These	
methods	avoid	the	restrictions	of	supervised	learning	and	the	reliance	on	model	gradients.		
They	allow	calibrating	models	with	noisy,	heterogeneous,	and	indirect	data,	such	as	the	
plethora	of	Earth	observations	now	available	(Fig.	1).	They	can	be	paired	with	ML	
emulators	to	speed	up	uncertainty	quantification,	reducing	the	number	of	climate	model	
runs	required	from	a	prohibitive	O(106),	with	standard	Markov	chain	Monte	Carlo	
methods,	to	a	manageable	O(103)12,13.		

The	otherwise	overwhelming	data	demands	arising	from	the	vast	range	of	unresolvable	
scales	in	the	climate	system	and	the	need	to	generalize	from	available	observations	to	



unseen	climates	can	be	mitigated	by	pairing	learning	from	data	with	domain-specific	
knowledge	(e.g.,	theories	and	conservation	laws).	The	area	of	combining	data	and	new	AI	
tools	with	domain-specific	knowledge	is	ripe	for	further	advances.	Progress	will	be	
important	not	just	for	the	climate	sciences	but	for	the	computational	sciences	and	
engineering	broadly,	where	learning	closure	models	for	unresolved	processes	from	limited	
data	is	a	common	problem.	

Whichever	AI	tools	will	prevail,	we	need	to	be	able	to	run	climate	models	𝑂(10#)	times	to	
calibrate	unresolvable	processes,	quantify	model	uncertainties,	and	to	produce	large	
ensembles	of	predictions	that	sample	from	the	learned	models	and	span	plausible	climate	
outcomes2,12,13.	Producing	these	large	ensembles	will	remain	infeasible	at	kilometer-scale	
resolution	for	the	next	decade.	Therefore,	while	we	should	push	the	resolution	frontier	as	
computer	performance	increases,	climate	modeling	in	the	next	decade	needs	to	focus	on	
resolutions	in	the	10–50	km	range.	In	this	range,	tropical	cyclones	and	mesoscale	ocean	
turbulence	begin	to	be	resolved14,15,	improving	the	simulation	of	the	most	damaging	
weather	hazards	and	of	the	rate	of	ocean	heat	and	carbon	uptake	relative	to	the	O(100	km)	
resolution	that	is	standard	today.		

Large	ensembles	then	remain	feasible	and,	in	fact,	are	beginning	to	be	generated.	
Simulations	at	yet	higher	resolutions,	from	kilometers	down	to	meters,	have	a	role	to	play	
here,	in	providing	training	and	validation	data	for	coarser-resolution	models,	including	in	
climates	different	from	today’s	for	which	we	do	not	have	observations;	however,	these	
simulations	do	not	need	to	span	the	globe	but	can	be	targeted	to	specific	regions	or	climate	
conditions	where	they	are	particularly	informative5—an	approach	that	lends	itself	well	to	
distributed	(cloud)	computing	(Fig.	1).		

A Hierarchy of Models in a Distributed Research Program 

Climate	modeling	must	support	a	variety	of	adaptation	decisions,	many	on	local	scales.	This	
requires	that	ensembles	of	climate	predictions	are	downscaled	to	impact-relevant	scales	
and	anchor	a	hierarchy	of	offline	hazard	models,	based	on	process	models	or	generative	AI,	
for	the	efficient	exploration	of	scenarios	and	propagation	of	uncertainties	to	specific	
climate	impacts.	Hazard	models	include	meter-scale	models	of	inland	and	coastal	
flooding16,	of	compound	storm-heatwave	impacts	on	infrastructure	and	vulnerable	
populations17,	and	of	wildfire	risks18.			

Importantly,	climate	models	must	be	developed	so	that	they	can	be	used	and	improved	
upon	through	rapid	iteration,	in	a	globally	inclusive	and	distributed	research	program	that	
does	not	rely	on	the	few	monolithic	centers	that	would	be	needed	if	the	focus	is	on	
kilometer-scale	global	modeling.	An	approach	focused	on	generating	large	ensembles	of	
simulations	at	moderately	high	resolution	(10–50	km)	provides	a	better	assessment	of	
climate	risks	and	enables	wider	adoption.	After	computationally	costly	calibration	and	
uncertainty	quantification,	such	models	can	be	run	by	diverse	groups,	tapping	into	the	
talent	pool	of	those	most	vulnerable	to	climate	change	and	knowledgeable	about	risks	to	
their	communities.	
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Box 1: Weather Forecasting vs. Climate Prediction 
Improved	data	assimilation	has	driven	recent	progress	in	weather	forecasting.	Similar	
progress	may	be	at	hand	in	climate	prediction.	However,	weather	forecasts	and	climate	
predictions	differ	fundamentally.	Weather	forecasts	are	predictions	of	the	first	kind,	aiming	
to	predict	future	system	states	given	initial	conditions19.	Predictability	of	the	first	kind	is	
limited	by	chaos:	the	state	of	the	atmosphere	is	forgotten	in	about	two	weeks.	Daily	
assimilation	of	weather	observations	provides	initial	conditions	for	weather	forecasting.	It	
also	compensates	for	errors	in	the	representation	of	unresolved	processes	by	repeatedly	
pulling,	for	example,	simulated	temperatures	back	toward	observations,	offsetting	biases	in	
a	model’s	energy	balance.	

By	contrast,	climate	predictions	are	predictions	of	the	second	kind19,	aiming	to	predict	
future	climate	statistics	given	evolving	boundary	conditions,	such	as	greenhouse	gas	
emissions.	Predictability	of	the	second	kind	is	limited	because	the	signal	of	changing	
climate	statistics	emerges	only	slowly	against	the	chaotic	background	variability.	To	
predict	these	slowly	changing	climate	statistics,	a	climate	model	must	run	freely	for	
decades	into	the	future,	without	a	chance	to	compensate	for	errors	through	assimilation	of	
observed	climate	states.	Therefore,	our	ability	to	predict	how	climate	statistics	change	on	
multidecadal	timescales	is	principally	limited	by	uncertainties	and	errors	in	the	
representation	of	unresolved	processes.	Uncertainties	about	emission	scenarios	
additionally	begin	to	contribute	substantially	on	timescales	around	30	years	and	dominate	
on	centennial	scales20.	

Thus,	improved	weather	forecasts,	whether	with	traditional	numerical	or	ML	models,	do	
not	directly	translate	into	improved	climate	predictions.	But	some	of	the	tools	that	led	to	
progress	in	weather	forecasting,	such	as	data	assimilation,	can	be	adapted	for	climate	
models	to	learn	from	data,	albeit	with	data	consisting	of	climate	statistics	rather	than	
weather	states.	

	 	



	

Figure	1:	To	improve	climate	models,	model	components	encoding	domain-specific	
knowledge	should	learn	from	diverse	climate	statistics	obtained	from	Earth	observations	
or	regional	high-resolution	simulations.	Ideally,	the	model	components	learn	jointly,	and	
have	their	joint	uncertainties	quantified,	to	reduce	and	reveal	compensating	errors	among	
components,	through	a	shared	layer	of	data	assimilation	and	ML	tools	wrapping	all	model	
components10.	Large	ensembles	of	climate	simulations	are	necessary	for	this	model	
calibration	and	UQ,	and	large	ensembles	are	also	necessary	to	sample	the	space	of	plausible	
climate	outcomes9.	These	simulation	ensembles	can	be	generated	at	moderately	high	
resolution	(10–50	km)	but	currently	not	at	kilometer	scales.	

	


