We define a BV-type space in the setting of Carnot groups (i.e., simply connected Lie groups with stratified nilpotent Lie algebra) that allows one to characterize all distributions F for which there exists a continuous horizontal vector field & phi;, vanishing at infinity, that solves the equation divH & phi; = F. This generalizes to the setting of Carnot groups some results by De Pauw and Pfeffer, [13], and by De Pauw and Torres, [14], for the Euclidean setting.
Baldi, A., Montefalcone, F. (2023). THE DISTRIBUTIONAL DIVERGENCE OF HORIZONTAL VECTOR FIELDS VANISHING AT INFINITY ON CARNOT GROUPS. LE MATEMATICHE, 78(1), 239-271 [10.4418/2023.78.1.9].
THE DISTRIBUTIONAL DIVERGENCE OF HORIZONTAL VECTOR FIELDS VANISHING AT INFINITY ON CARNOT GROUPS
Baldi, A
;
2023
Abstract
We define a BV-type space in the setting of Carnot groups (i.e., simply connected Lie groups with stratified nilpotent Lie algebra) that allows one to characterize all distributions F for which there exists a continuous horizontal vector field & phi;, vanishing at infinity, that solves the equation divH & phi; = F. This generalizes to the setting of Carnot groups some results by De Pauw and Pfeffer, [13], and by De Pauw and Torres, [14], for the Euclidean setting.File | Dimensione | Formato | |
---|---|---|---|
2481-Article Text-6993-1-10-20230721.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
252.62 kB
Formato
Adobe PDF
|
252.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.