The Prostate Imaging and Reporting Data System (PI-RADS) has a key role in the management of prostate cancer (PCa). However, the clinical interpretation of PI-RADS 3 score lesions may be challenging and misleading, thus postponing PCa diagnosis to biopsy outcome. Multiparametric magnetic resonance imaging (mpMRI) radiomic analysis may represent a stand-alone non invasive tool for PCa diagnosis. Hence, this study aims at developing a mpMRI-based radiomic PCa diagnostic model in a cohort of PI-RADS 3 lesions. We enrolled 133 patients with 155 PI-RADS 3 lesions, 84 of which had PCa confirmation by fusion biopsy. Local radiomic features were generated from apparent diffusion coefficient maps, and the four most informative were selected using LASSO, the Wilcoxon rank-sum test (p < 0.001), and support vector machines (SVMs). The selected features where augmented and used to train an SVM classifier, externally validated on a holdout subset. Linear and second-order polynomial kernels were exploited, and their predictive performance compared through receiver operating characteristics (ROC)-related metrics. On the test set, the highest performance, equally for both kernels, was specificity = 76%, sensitivity = 78%, positive predictive value = 80%, and negative predictive value = 74%. Our findings substantially improve radiologist interpretation of PI-RADS 3 lesions and let us advance towards an image-driven PCa diagnosis.
Caterina Gaudiano, M.M. (2023). An Apparent Diffusion Coefficient-based machine learning model can improve Prostate Cancer detection in the grey area of the PI-RADS 3 category: a single-centre experience. CANCERS, 15, 1-12 [10.3390/cancers15133438].
An Apparent Diffusion Coefficient-based machine learning model can improve Prostate Cancer detection in the grey area of the PI-RADS 3 category: a single-centre experience
Margherita Mottola;Lorenzo Bianchi;Lorenzo Braccischi;Makoto Taninokuchi Tomassoni;Arrigo Cattabriga;Maria Adriana Cocozza;Riccardo Schiavina;Stefano Fanti;Michelangelo Fiorentino;Eugenio Brunocilla;Cristina Mosconi;Alessandro Bevilacqua
2023
Abstract
The Prostate Imaging and Reporting Data System (PI-RADS) has a key role in the management of prostate cancer (PCa). However, the clinical interpretation of PI-RADS 3 score lesions may be challenging and misleading, thus postponing PCa diagnosis to biopsy outcome. Multiparametric magnetic resonance imaging (mpMRI) radiomic analysis may represent a stand-alone non invasive tool for PCa diagnosis. Hence, this study aims at developing a mpMRI-based radiomic PCa diagnostic model in a cohort of PI-RADS 3 lesions. We enrolled 133 patients with 155 PI-RADS 3 lesions, 84 of which had PCa confirmation by fusion biopsy. Local radiomic features were generated from apparent diffusion coefficient maps, and the four most informative were selected using LASSO, the Wilcoxon rank-sum test (p < 0.001), and support vector machines (SVMs). The selected features where augmented and used to train an SVM classifier, externally validated on a holdout subset. Linear and second-order polynomial kernels were exploited, and their predictive performance compared through receiver operating characteristics (ROC)-related metrics. On the test set, the highest performance, equally for both kernels, was specificity = 76%, sensitivity = 78%, positive predictive value = 80%, and negative predictive value = 74%. Our findings substantially improve radiologist interpretation of PI-RADS 3 lesions and let us advance towards an image-driven PCa diagnosis.File | Dimensione | Formato | |
---|---|---|---|
Bevilacqua - An Apparent Diffusion Coefficient-Based Machine Learning.2023.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.