We prove the existence and multiplicity of weak solutions for a mixed local-nonlocal problem at resonance. In particular, we consider a not necessarily positive operator which appears in models describing the propagation of flames. A careful adaptation of well known variational methods is required to deal with the possible existence of negative eigenvalues.
Giovannardi G., Mugnai D., Vecchi E. (2023). An Ahmad-Lazer-Paul-type result for indefinite mixed local-nonlocal problems. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 527(2), 1-16 [10.1016/j.jmaa.2023.127442].
An Ahmad-Lazer-Paul-type result for indefinite mixed local-nonlocal problems
Vecchi E.
2023
Abstract
We prove the existence and multiplicity of weak solutions for a mixed local-nonlocal problem at resonance. In particular, we consider a not necessarily positive operator which appears in models describing the propagation of flames. A careful adaptation of well known variational methods is required to deal with the possible existence of negative eigenvalues.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2305.02624.pdf
Open Access dal 29/05/2024
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
348.23 kB
Formato
Adobe PDF
|
348.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


