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AN AHMAD-LAZER-PAUL-TYPE RESULT FOR INDEFINITE

MIXED LOCAL-NONLOCAL PROBLEMS

GIANMARCO GIOVANNARDI, DIMITRI MUGNAI, AND EUGENIO VECCHI

Abstract. We prove the existence and multiplicity of weak solutions for a
mixed local-nonlocal problem at resonance. In particular, we consider a not
necessarily positive operator which appears in models describing the propa-
gation of flames. A careful adaptation of well known variational methods is
required to deal with the possible existence of negative eigenvalues.

1. Introduction

Let Ω ⊂ R
n be an open and bounded set with C1-smooth boundary ∂Ω with

n > 2. We consider the following Dirichlet boundary value problem

(1.1)

{

Lαu = λu+ f(x, u), in Ω
u = 0, in R

n \ Ω,

where
Lαu := −∆u+ α(−∆)su .

Here α ∈ R with no a priori restrictions, ∆u denotes the classical Laplace operator
while (−∆)su, for fixed s ∈ (0, 1) and up to a multiplicative positive constant, is
the fractional Laplacian, usually defined as

(−∆)su(x) := C(n, s) P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy ,

where P.V. denotes the Cauchy principal value, that is

P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy = lim

ε→0

∫

{y∈Rn : |y−x|≥ε}

u(x)− u(y)

|x− y|n+2s
dy,

see [29] for more details. Clearly, when α = 0, one recovers the classical Laplacian.
Finally, λ ∈ R is a variational Dirichlet eigenvalue of Lα (hence (1.1) is a problem
at resonance), namely there are nontrivial solutions for the problem

{

Lαu = λu, in Ω,
u = 0, in R

n \ Ω,

see Section 2 for the precise setting.
We suppose that f satisfies the following assumptions.
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Assumptions on f .

(fbc) f : Ω× R→ R is a bounded and Carathéodory function, namely:

1. f(x, ·) is continuous in R for a.e. x ∈ Ω
2. f(·, t) is measurable in Ω for all t ∈ R.

(F±∞)

lim
u∈Ker(Lα−λ),

‖u‖→∞

∫

Ω

F (x, u)dx = ±∞

uniformly in x ∈ Ω.

Remark 1.1. The assumption (F±∞) is the so–called Ahmad-Lazer-Paul condition
introduced in [1] and often used in resonant problems, for instance see [21]. A
sufficient condition implying it is given by

F (x, t) =

∫ t

0

f(x, τ)dτ → ±∞ as |t| → +∞,

as can be quite easily checked, see e.g. [20, Lemma 3.4].

The goal of this paper is to extend to a mixed operator an existence and mul-
tiplicity result established in [32] for the Laplace operator. We state immediately
our first result:

Theorem 1.2. Let f satisfy (fbc) and (F±∞) and suppose that λ ∈ R is a varia-

tional Dirichlet eigenvalue of Lα. Then, the problem (1.1) admits a weak solution

u ∈ X(Ω).

We immediately clarify that Theorem 1.2: it is somehow easy to get for α > 0
or when

−
1

Cs
< α < 0 ,

where Cs > 0 is the best constant of the continuous embedding H1
0 ⊂ Hs (see e.g.

[15]), i.e.

[u]2s :=

∫∫

R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy ≤ Cs

∫

Ω

|∇u|2 dx .

In this perspective, the probably more interesting case is when α < −
1

Cs
is as-

sumed. Indeed, the situation becomes suddenly more delicate, mainly because the
local–nonlocal operator is not more positive definite, indefinite operators. As a
consequence, the bilinear form naturally associated to it does not induce a scalar
product nor a norm, the variational spectrum may exhibit negative eigenvalues and
even the maximum principles may fail, see e.g. [4]. As a consequence, some in-
equalities cannot be adapted to our situations, since dividing by eigenvalues may
reverse the sign, nullifying a verbatim adaptation of [32]. For this reason, we need
to establish some crucial estimates for eigenspaces, see Lemmas 2.6 and 2.7.

We stress that operators of this latter form (e.g. with α = −1) do not have
only a purely theoretical mathematical interest, indeed the play a role in applied
sciences like combustion theory. We limit ourselves to mention that the stationary
part in the original model proposed by Sivashinsky [35] to deal with the instability
of the propagation front of flames can be reduced to operator of the form previously
described, and this may happen under phisically motivated assumptions, see e.g.
[26] and the references therein.
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We stress that Theorem 1.2 is actually a further generalization of a result by
Ahmad, Lazer and Paul [1] where the authors dealt with a local operator at res-
onance. Despite well known, we want to recall here that the original proof in [1]
is by no means of variational flavour, and consists in a delicate construction of
the solution using a sort of Galerkin method. As a matter of fact, a striking and
not foreseeable consequence of [1] is an existence result with proof relying on the
Saddle Point Theorem by Rabinowitz [32], which is one of the cornerstones of vari-
ational methods in nonlinear analysis. We will follow this latter approach, which
has already been used also in the pure nonlocal case in [20]. We notice that, as
in [20], it is possible to work in a slightly more general case considering weighted
Dirichlet eigenvalues, where the weight a is a Lipschitz function. However, treating
solutions of Lα = λa(x)u doesn’t change the spirit of our result, and for this reason
we concentrate on eigenvalues without weight.

In the spirit of [32], under assumption (F−∞), we can also prove a multiplicity
result under a few extra assumptions. The precise statement is the following

Theorem 1.3. Let f satisfy (fbc) and (F−∞) and suppose that λ ∈ R is a vari-

ational Dirichlet eigenvalue of Lα. We further assume that f(x, 0) = 0 and that

f(x, t) is odd in the t variable. Finally, we assume that

(Fpos) there exists r > 0 such that F (x, t) > 0, for 0 < |t| < r and x ∈ Ω.

Then, problem (1.1) admits at least dim(H0
λ) distinct pair of nontrivial weak solu-

tions, where H0
λ denotes the eigenspace associated to λ.

Remark 1.4. We remark that, as in [32], we are able to prove the multiplicity result
only when (F−∞), since only in such a case we are able to prove a decomposition
of the space X(Ω) for which the abstract multiplicity theorem 3.10 holds. Hence,
the multiplicity result when (F+∞) holds is an open problem.

We close the introduction with a quite short overview on the more recent (elliptic)
PDEs oriented literature. Problems driven by operators of mixed type, even with
a nonsingular nonlocal operator [16], have raised a certain interest in the last few
years, for example in connection with the study of optimal animal foraging strategies
(see e.g. [19] and the references therein). From the pure mathematical point of view,
the superposition of such operators generates a lack of scale invariance which may
lead to unexpected complications.

At the present stage, and without aim of completeness, the investigations have
taken into consideration interior regularity and maximum principles (see e.g. [4, 12,
14, 23, 24]), boundary Harnack principle [13], boundary regularity and overdeter-
mined problems [10, 36], existence of solutions (see e.g. [7, 8, 9, 17, 18, 25, 31, 34,
3, 22]) and shape optimization problems [5, 6].

The paper is organized as follows. In Section 2 we introduce some preliminary
definitions and results, such as the Hilbert space X(Ω), the notion of weak solution
of (1.1) (as critical point of the functional Jλ), the variational eigenvalue problem
for Lα and the crucial main lemmas. Section 3 is dedicated to the proofs of the
Theorem 1.2 and Theorem 1.3; we first deal with the geometry of the functional
Jλ and the Palais-Smale condition, then we verify the hypothesis of the Saddle
Point Theorem and [32, Theorem 1.9]. In the Appendix we recall the notion of
Krasnoselskii genus and we state [32, Theorem 1.9].
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2. Assumptions, notation and preliminary results

Let Ω ⊆ R
n be a connected and bounded open set with C1-smooth boundary

∂Ω. We define the space of solutions of problem (1.1) as

X(Ω) :=
{

u ∈ H1(Rn) : u ≡ 0 a.e. on R
n \ Ω

}

.

Thanks to the regularity assumption on ∂Ω (see [11, Proposition 9.18]), we can
identify the space X(Ω) with the space H1

0 (Ω) in the following sense:

(2.1) u ∈ H1
0 (Ω) ⇐⇒ u · 1Ω ∈ X(Ω) ,

where 1Ω is the indicator function of Ω. From now on, we shall always identify a
function u ∈ H1

0 (Ω) with û := u · 1Ω ∈ X(Ω).
By the Poincaré inequality and (2.1), we get that the quantity

‖u‖X :=

(
∫

Ω

|∇u|2 dx

)1/2

, u ∈ X(Ω) ,

endows X(Ω) with a structure of (real) Hilbert space, which is isometric to H1
0 (Ω).

To fix the notation, we denote by 〈·, ·〉X the scalar product which induces the norm
above on X(Ω). We briefly recall that the space X(Ω) is separable and reflexive,
C∞

0 (Ω) is dense in X(Ω) and eventually that X(Ω) compactly embeds in Lp(Ω) for

any p ∈
[

1, 2n
n−2

)

and in

Hs
0 (Ω) := {H

s(Rn) : u ≡ 0 a.e. on R
n \ Ω}

by [27, Theorem 16.1].
With the correct functional setting, we are ready to give the suitable notion of

weak solution for problem (1.1).

Definition 2.1. A function u ∈ X(Ω) is called a weak solution of (1.1) if
∫

Ω

〈∇u,∇ϕ〉 dx + α

∫∫

R2n

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

= λ

∫

Ω

uϕdx+

∫

Ω

f(x, u)ϕdx

for every ϕ ∈ X(Ω).

As usual, weak solutions of (1.1) can be found as critical points of the functional
Jλ : X(Ω)→ R defined as

Jλ(u) :=
1

2

∫

Ω

|∇u|2 dx+
α

2

∫∫

R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy−

λ

2

∫

Ω

|u|2 dx−

∫

Ω

F (x, u) dx,

where

F (x, t) :=

∫ t

0

f(x, σ) dσ, t ∈ R.

By assumption (fbc) it is standard to prove (see for instance [2]) that the functional
Jλ is Fréchet differentiable and that

J ′
λ(u)(ϕ) =

∫

Ω

〈∇u,∇ϕ〉 dx+ α

∫∫

R2n

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

− λ

∫

Ω

u(x)ϕ(x) dx −

∫

Ω

f(x, u(x))ϕ(x) dx for every ϕ ∈ X(Ω) .
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Now, we consider the bilinear form Bα : X(Ω)× X(Ω)→ R, defined by

Bα(u, v) :=

∫

Ω

〈∇u,∇v〉 dx+ α

∫∫

R2n

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dxdy

for any u, v ∈ X(Ω). In spite of the fact that α can be such that Bα is not positive
definite, we give the following definition.

Definition 2.2. We say that u and v are Bα-orthogonal if

Bα(u, v) = 0.

The terminology adopted above is justified by the fact that, for α > 0 (more
precisely if α > − 1

Cs
), the bilinear form Bα defines a true scalar product.

We conclude this section dealing with the eigenvalue problem associated to the
operator Lα, that is the following boundary value problem

(2.2)

{

Lαu = λu, in Ω ,

u = 0, in R
n \ Ω ,

where λ ∈ R. According to Definition 2.1, we give the following definition.

Definition 2.3. A number λ ∈ R is called a variational Dirichlet eigenvalue of Lα
if there exists a nontrivial weak solution u ∈ X(Ω) of (2.2) or, equivalently, if

∫

Ω

〈∇u,∇ϕ〉 dx + α

∫∫

R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy = λ

∫

Ω

uϕdx

for every ϕ ∈ X(Ω). If such a function u exists, we call it eigenfunction associated
to the eigenvalue λ.

Note that the linearity of Lα guarantees a complete description of its eigenvalues,
and relative eigenfunctions, according to the following result, see [28, Proposition
2.4]:

Proposition 2.4. Let n > 2. Then the following statements hold true:

(a) Lα admits a divergent and bounded from below sequence of eigenvalues {λk}k∈N,

i.e., there exists C > 0 such that

−C < λ1 ≤ λ2 ≤ . . . ≤ λk → +∞ , as k → +∞.

Moreover, for every k ∈ N, λk can be characterized as

(2.3) λk = min
u∈Pk

‖u‖
L2(Ω)=1

{
∫

Ω

|∇u|2 dx+ α

∫∫

R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy

}

,

where

P1 := X(Ω),

and, for every k ≥ 2,

Pk := {u ∈ X(Ω) : Bα(u, uj) = 0 for every j = 1, . . . , k − 1} ;

(b) for every k ∈ N there exists an eigenfunction uk ∈ X(Ω) corresponding to

λk, which realizes the minimum in (2.3);
(c) the sequence {uk}k∈N of eigenfunctions constitutes an orthonormal basis of

L2(Ω); moreover, the eigenfunctions are Bα-orthogonal.
(d) for every k ∈ N, λk has finite multiplicity.
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Remark 2.5. Clearly, if α > −
1

Cs
there is an improvement on the lower bound of

λ1, which is thus strictly positive. Moreover, in this case, λ1 is also simple.

We denote by Hk the linear subspace of X(Ω) generated by the first k eigenfunc-
tions of Lα, i.e.

Hk = span
R
{u1, . . . , uk}.

Notice that Pk+1 = (Hk)
⊥Bα , namely the subspace Bα-orthogonal to Hk. Also we

set

H0
k = spanR{uj : λj = λk},

i.e. the kernel of Lα − λk, and

H−
k = spanR{uj : λj < λk}.

By Proposition 2.4 (a) we can infer the existence of a positive integer N0 ∈ N such
that λN0 is the first (not necessarily simple) positive eigenvalue. Of course, λk > 0
for every k > N0.
We further notice that, again by Proposition 2.4,

(2.4) λk+1

∫

Ω

u2 dx ≤

∫

Ω

|∇u|2 dx + α

∫∫

R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy

for every u ∈ span(u1, . . . , uk)
⊥ = Pk+1 and

(2.5)

∫

Ω

|∇u|2 dx+ α

∫∫

R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy ≤ λk

∫

Ω

u2 dx

for every u ∈ Hk.
We first need the following preliminary result inspired by Rabinowitz [32], see

[28, Lemma 4.1] for a proof.

Lemma 2.6. Let k ∈ N be such that

λ1 ≤ λ2 ≤ . . . ≤ λk−1 ≤ λk < λk+1 ≤ . . .

and decompose the space X(Ω) as X(Ω) = Hk⊕Pk+1, where Hk := span(u1, . . . , uk).
Then, there exists a positive constant β such that for any u ∈ Pk+1

(2.6) Bα(u, u)− λk‖u‖
2
L2(Ω) ≥ β‖u‖2

X(Ω),

or, equivalently,

inf
u∈Pk+1\{0}

{

1 +
α[u]2s − λk‖u‖

2
L2(Ω)

‖u‖2
X(Ω)

}

> 0.

We now prove a sort of counterpart of Lemma 2.6 when we restrict our attention
to the finite dimensional space Hk. The former and the next lemma will be two
of the crucial ingredients to verify that the functional Jλ verifies the saddle point
geometry.

Lemma 2.7. Let k ∈ N be such that λ = λk < λk+1. Then there exists a positive

constant γ > 0, such that

(2.7) Bα(u, u)− λk‖u‖
2
L2(Ω) ≤ −γ‖u

−‖2
X(Ω)

for each u ∈ Hk, where u = u0 + u−, u0 ∈ H0
k and u− ∈ H−

k .
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Proof. If u ≡ 0, then the assertion is trivial. Hence we assume u ∈ Hk r {0}.
Thanks to Proposition 2.4 (c), a simple computation yields that

Bα(u, u)− λk‖u‖
2
L2(Ω) = Bα(u

−, u−)− λk‖u
−‖2L2(Ω),

which is nonpositive by (2.5). Then it suffices to prove that there exists a positive
constant γ > 0 such that

(2.8) sup
u−∈H−

k
\{0}

{

1 +
α[u−]2 − λk‖u

−‖2L2(Ω)

‖u−‖2
X(Ω)

}

= −γ.

To this aim, we argue as in [28, Lemma 4.1] assuming by contradiction that there
exists a sequence {u−

n }n∈N ∈ H−
k \ {0} such that

(2.9) 1 +
α[u−

n ]
2 − λk‖u

−
n ‖

2
L2(Ω)

‖u−
n ‖2X(Ω)

→ 0, as n→ +∞.

We then consider the normalized (in X(Ω)) sequence

v−n :=
u−
n

‖u−
n ‖X(Ω)

∈ H−
k \ {0},

and, since H−
k \ {0} is finite dimensional, we can infer the existence of a function

v− ∈ H−
k with ‖v−‖X(Ω) = 1 and such that v−n → v−. Therefore, by the compact

embedding of X(Ω) in Hs
0(Ω) and in L2(Ω), we find

1 + α[v−n ]2 − λk‖v
−
n ‖

2
L2(Ω) → 1 + α[v−]2 − λk‖v

−‖2L2(Ω), as n→ +∞,

but at the same time,

1 + α[v−n ]2 − λk‖v
−
n ‖

2
L2(Ω) → 0, as n→ +∞.

Since v− ∈ H−
k \ {0}, we also have that

0 > Bα(v
−, v−)− λk‖v

−‖2L2(Ω) = ‖v
−‖2

X(Ω) − 1 = 0,

and a contradiction arises. �

The next Lemma is taken verbatim from [20].

Lemma 2.8. Let f satisfy (fbc). Then there exists a positive constant M̃ > 0,
depending on Ω, such that

(2.10)

∣

∣

∣

∣

∫

Ω

F (x, u(x))dx

∣

∣

∣

∣

≤ M̃ ‖u‖X(Ω)

for all u ∈ X(Ω).

Proof. By definition of F we have
∣

∣

∣

∣

∫

Ω

F (x, u(x))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Ω

∫ u(x)

0

f(x, t) dt dx

∣

∣

∣

∣

∣

≤M

∫

Ω

|u(x)|dx

By the Hölder and Poincaré inequalities, we obtain

M

∫

Ω

|u(x)|dx ≤M |Ω|
1
2 ‖u‖L2(Ω) ≤ M̃‖u‖X(Ω).

Hence we get (2.10), with M̃ depending on Ω. �
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3. Proof of Theorem 1.2 and Theorem 1.3

The proof of Theorem 1.2 follows the classical streamlines in minimax theory. In
particular, and as already mentioned, we will make use of the Saddle Point Theorem
by Rabinowitz (see [32, 33]), and therefore we have to check that its assumptions
are satisfied.

3.1. Geometry of the functional Jλ.

Lemma 3.1. Let f satisfy (fbc) and (F−∞) and let k ∈ N be such that λk < λk+1.

For every K > 0, there exists r = r(K) > 0 such that Jλ(u) ≥ K for every

u ∈ Pk+1 ⊕H0
k with ‖u‖X(Ω) ≥ r.

Proof. Since u ∈ Pk+1 ⊕ H0
k , we can write u = u+ + u0, where u+ ∈ Pk+1 and

u0 ∈ H0
k . It now suffices to note that,

(3.1)

Jλk
(u) =

1

2
Bα(u, u)−

λk

2
‖u‖2L2(Ω) −

∫

Ω

F (x, u) dx

=
1

2
Bα(u

+, u+)−
λk

2
‖u+‖2L2(Ω) −

∫

Ω

F (x, u) dx

≥
β

2
‖u+‖2

X(Ω) −

∫

Ω

F (x, u) dx (by Lemma 2.6)

=
β

2
‖u+‖2

X(Ω) −

∫

Ω

F (x, u0) dx−

∫

Ω

(

F (x, u)− F (x, u0)
)

dx

=
β

2
‖u+‖2

X(Ω) −

∫

Ω

F (x, u0) dx−

∫

Ω

∫ u(x)

u0(x)

f(x, t)dtdx

≥
β

2
‖u+‖2

X(Ω) −

∫

Ω

F (x, u0) dx− M̃‖u+‖X(Ω),

and the conclusion now easily follows from (F−∞). �

A similar statement holds when (F+∞) is in force, namely

Lemma 3.2. Let f satisfy (fbc) and let k ∈ N be such that λk < λk+1. For every

K > 0, there exists r = r(K) > 0 such that Jλ(u) ≥ K for every u ∈ Pk+1 with

‖u‖X(Ω) ≥ r.

Proof. It suffices to note that, being u ∈ Pk+1,

(3.2)

Jλk
(u) =

1

2
Bα(u, u)−

λk

2
‖u‖2L2(Ω) −

∫

Ω

F (x, u) dx

≥
β

2
‖u‖2

X(Ω) −

∫

Ω

F (x, u) dx (by Lemma 2.6)

≥
β

2
‖u‖2

X(Ω) − M̃‖u‖X(Ω), (by Lemma 2.8).

The conclusion now easily follows. �

Remark 3.3. An immediate consequence of Lemma 3.1 or of Lemma 3.2 is that

(3.3) lim inf
u∈Pk+1

‖u‖X(Ω)→+∞

Jλk
(u)

‖u‖2
X(Ω)

> 0.
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Proposition 3.4. Let f satisfy (fbc) and let λk < λk+1 for some k ∈ N. If (F+∞)
is in force, then we have

(3.4) lim
u∈Hk

‖u‖X(Ω)→+∞

Jλk
(u) = −∞,

while if (F−∞) holds, then

(3.5) lim
u∈H−

k

‖u‖X(Ω)→+∞

Jλk
(u) = −∞,

Proof. Let us start with the case in which (F+∞) holds. Since u ∈ Hk we can write
u = u− + u0 with u− ∈ H−

k and u0 ∈ H0
k . Then we have

Jλk
(u) =

1

2
Bα(u, u)−

λk

2

∫

Ω

|u(x)|2dx−

∫

Ω

(F (x, u−(x) + u0(x)) − F (x, u0(x)))dx

−

∫

Ω

F (x, u0(x))dx

Notice that, as in proof of Lemma 2.8, we have

∣

∣

∣

∣

∫

Ω

(F (x, u−(x) + u0(x))− F (x, u0(x)))dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Ω

∫ u−(x)+u0(x)

u0(x)

f(x, t) dtdx

∣

∣

∣

∣

∣

≤M

∫

Ω

|u−(x)|dx

≤ M̃‖u−‖X(Ω).

Thus, by Lemma 2.7 and the previous inequality, we obtain

(3.6) Jλk
(u) ≤ −

γ

2
‖u−‖2

X(Ω) + M̃‖u−‖X(Ω) −

∫

Ω

F (x, u0(x))dx.

Moreover, by Proposition 2.4(c) and the Cauchy-Schwarz inequality, we have

‖u‖2
X(Ω) = ‖u

0‖2
X(Ω) + ‖u

−‖2
X(Ω) + 2〈u0, u−〉X(Ω)

≤ ‖u0‖2
X(Ω) + ‖u

−‖2
X(Ω) + 2 ‖u0‖X(Ω) ‖u

−‖X(Ω).

Thus, since ‖u‖X(Ω) diverges at +∞ we have that at least one of the two norms,

either ‖u0‖X(Ω) or ‖u
−‖X(Ω), goes to infinity, as well. Assume that ‖u0‖X(Ω) → +∞,

then ‖u−‖X(Ω) can be finite or infinite. By (F+∞) and by (3.6) we get Jλ(u)→ −∞.

Otherwise, suppose that ‖u0‖X(Ω) is finite, then ‖u−‖X(Ω) diverges to +∞ and by
Lemma 2.8 the last term in (3.6) has a linear growth. Hence Jλk

(u)→ −∞. This
closes the first part.

The case in which (F−∞) holds is rather simpler. Indeed, keeping the notation
u− for functions in H−

k and reasoning as above, we have that

Jλk
(u−) ≤ −

γ

2
‖u−‖2

X(Ω) + M̄‖u−‖X(Ω),

an this closes the proof. �
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3.2. Palais-Smale condition. Let us start recalling the following notion.

Definition 3.5. We say that {uj}j∈N is a Palais-Smale sequence for Jλ at level
c ∈ R if Jλ(uj)→ c as j →∞ and

(3.7) J ′
λ(uj)→ 0, as j → +∞

holds true.

Proposition 3.6. Let f satisfy (fbc) and (F±∞). Suppose further that λk < λk+1

for some k ∈ N. If {uj}j∈N is a Palais-Smale sequence for Jλk
, then {uj}j∈N is

bounded in X(Ω).

Proof. Let uj = u0
j + u−

j + u+
j where u0

j ∈ H0
k , u

−
j ∈ H−

k and u+
j ∈ Pk+1. We will

show that all sequence u0
j , u

−
j , u

+
j are bounded.

Let us start noticing that by (3.7), we have
(3.8)

ε(1)‖u±
j ‖X(Ω) ≥

∣

∣〈J ′
λk
(uj), u

±
j 〉

∣

∣

=

∣

∣

∣

∣

Bα(uj , u
±
j )− λk

∫

Ω

uj(x)u
±
j (x) dx −

∫

Ω

f(x, uj(x))u
±
j (x)dx

∣

∣

∣

∣

,

where ε(1)→ 0 as j →∞. Since f is bounded, similarly to Lemma 2.8 we have

(3.9)

∣

∣

∣

∣

∫

Ω

f(x, uj(x))u
±
j (x) dx

∣

∣

∣

∣

≤ M̃‖u±
j ‖X(Ω).

Thanks to Proposition 2.4 (c), we have

(3.10) 〈J ′
λk
(uj), u

±
j 〉 = Bα(u

±
j , u

±
j )− λk

∫

Ω

|u±
j (x)|

2 dx −

∫

Ω

f(x, uj(x))u
±
j (x)dx.

Since u+
j belongs to Pk+1, by Lemma 2.6 and (3.9) we get

ε(1)‖u+
j ‖X(Ω) ≥ β‖u+

j ‖
2
X(Ω) − M̃‖u+

j ‖X(Ω),

so that the sequence {u+
j }j∈N is bounded in X(Ω). Furthermore, again by (3.8),

(3.10), Lemma 2.7 and (3.9) we get

ε(1)‖u−
j ‖X(Ω) ≥ −〈J

′
λk
(uj), u

−
j 〉 ≥ γ‖u−‖2

X(Ω) − M̃‖u−‖X(Ω).

Then the sequence {u−
j }j∈N is bounded in X(Ω), as well.

We finally prove that u0
j is bounded in X(Ω). First of all, we recall that u0

j is an
eigenfunction associated to λk, namely

(3.11) Bα(u
0
j , u

0
j) = λk

∫

Ω

|u0
j(x)|

2dx.

By the Palais-Smale condition, the equation (3.11) and Proposition 2.4 (c), we gain

c← Jλk
(uj) =

1

2
Bα(u

+
j , u

+
j ) +

1

2
Bα(u

−
j , u

−
j )−

λk

2

∫

Ω

(

|u+
j (x)|

2 + |u−
j (x)|

2
)

dx

−

∫

Ω

(

F (x, uj(x))− F (x, u0
j (x))

)

dx−

∫

Ω

F (x, u0
j(x))dx.
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Thus, we have that
(3.12)

∣

∣

∣

∣

∫

Ω

F (x, u0
j(x))dx

∣

∣

∣

∣

≤ |Jλk
(uj)|+

∣

∣

∣

∣

1

2
Bα(u

+
j , u

+
j ) +

1

2
Bα(u

−
j , u

−
j )

−
λk

2

∫

Ω

(

|u+
j (x)|

2 + |u−
j (x)|

2
)

dx −

∫

Ω

(

F (x, uj(x))− F (x, u0
j (x))

)

dx

∣

∣

∣

∣

By the Poincaré inequality and the bound on u+
j and u−

j we gain
∣

∣

∣

∣

λk

2

∫

Ω

(

|u+
j (x)|

2 + |u−
j (x)|

2
)

dx

∣

∣

∣

∣

≤ C
(

‖u+
j ‖

2
X(Ω) + ‖u

−
j ‖

2
X(Ω)

)

≤ C̃

for some C̃ > 0 and all j ∈ N. Moreover,
∣

∣

∣

∣

∫

Ω

(

F (x, uj(x)) − F (x, u0
j(x))

)

∣

∣

∣

∣

≤

∫

Ω

∣

∣

∣

∣

∣

∫ u0
j(x)+u+

j
(x)+u−

j
(x)

u0
j
(x)

f(x, t)dt

∣

∣

∣

∣

∣

≤M

∫

Ω

(

|u−
j |+ |u

+
j |
)

dx

≤M̃
(

‖u−
j ‖X(Ω) + ‖u

+
j ‖X(Ω)

)

≤ C1

for some C1 and all j ∈ N. Therefore, from (3.12), recalling that u±
j are bounded,

we obtain
∣

∣

∣

∣

∫

Ω

F (x, u0
j(x))dx

∣

∣

∣

∣

≤ |c|+ o(1) +

∣

∣

∣

∣

1

2
Bα(u

+
j , u

+
j ) +

1

2
Bα(u

−
j , u

−
j )

∣

∣

∣

∣

+ C̃ + C1 ≤ C2,

where C2 > 0 is a constant independent of j and o(1) → 0 as j → ∞. Hence the
sequence of integrals

∫

Ω
F (x, u0

j (x))dx is bounded. Finally, since u0
j belongs to H0

k ,

by (F±∞) we get that u0
j is bounded in X(Ω). �

We establish the validity of the Palais-Smale condition thanks to the following
result.

Proposition 3.7. Let f satisfy (fbc) and (F±∞). Suppose further that λk < λk+1

for some k ∈ N. If {uj}j∈N is a Palais-Smale sequence for Jλk
, then there exists

u∞ in X(Ω) such that uj strongly converges to u∞ in X(Ω).

Proof. By Proposition 3.6 uj is bounded and X(Ω) is reflexive, since X(Ω) is an
Hilbert space. Then there exists u∞ ∈ X(Ω) such that, up to a subsequence, uj

weakly converges to u∞ in X(Ω). Since X(Ω) is compactly embedded in Hs
0(Ω) (and

so in L2(Ω)), then, up to a subsequence, uj → u∞ in Hs
0(Ω) (and so in L2(Ω)) and

uj → u∞ a.e. in Ω. This implies that

(3.13) Bα(uj , ϕ)→ Bα(u∞, ϕ)

for all ϕ ∈ X(Ω), as j → +∞.
Since uj is a Palais-Smale sequence, we have

(3.14)

0← 〈J ′
λk
(uj), uj − u∞〉 =Bα(uj , uj)− Bα(uj , u∞)

− λk

∫

Ω

uj(x)(uj(x)− u∞(x))dx

−

∫

Ω

f(x, uj(x))(uj(x)− u∞(x))dx.
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Now, by the Hölder inequality and the bound on f we get
∣

∣

∣

∣

λk

∫

Ω

uj(x)(uj(x) − u∞(x))dx +

∫

Ω

f(x, uj(x))(uj(x) − u∞(x))dx

∣

∣

∣

∣

≤
(

λk‖uj‖L2(Ω) +M |Ω|
1
2

)

‖uj − u∞‖L2(Ω) → 0,

as j → +∞. Therefore, passing to the limit in (3.14) and taking into account (3.13)
we get

Bα(uj , uj)→ Bα(u∞, u∞).

Since uj → u in Hs
0(Ω), we conclude that ‖uj‖X(Ω) → ‖u∞‖X(Ω). X(Ω) being

uniformly convex, we conclude that uj → u∞ strongly in X(Ω). �

By combining Propositions 3.6 and 3.7 we have the proof of the following com-
pactness property.

Proposition 3.8. Let f satisfy (fbc) and (F±∞). Suppose further that λk < λk+1

for some k ∈ N. Then Jλk
satisfies the Palais-Smale condition at level c for any

c ∈ R, namely every Palais-Smale sequence at level c admits a strongly convergent

subsequence.

We are now ready to conclude with the

Proof of Theorem 1.2. Let us start fixing some notation. Since λ is an eigenvalue,
there exists k ∈ N such that λ = λk < λk+1. Once k has been found, we fix the
decomposition X(Ω) = Hk ⊕ Pk+1, with Hk having finite dimension.

Let us start with the case in which (F+∞) is in force. From (3.3) for any H > 0
there exist R > 0 such that, if u ∈ Pk+1 and ‖u‖X(Ω) ≥ R, then

Jλk
(u) > H.

When u ∈ Pk+1 and ‖u‖X(Ω) ≤ R, by (2.4), the Rellich-Kondrachov Theorem, the
Hölder inequality and (2.4) we have

Jλk
(u) ≥

λk+1 − λk

2

∫

Ω

|u(x)|2dx−

∫

Ω

F (x, u(x))dx

≥ −M

∫

Ω

|u(x)|dx ≥ −M̃‖u(x)‖X(Ω) ≥ −M̃R =: −CR,

where M̃ is a positive constant. Therefore, we obtain

(3.15) Jλk
(u) ≥ −CR for any u ∈ Pk+1.

Furthermore, by (3.4) in Proposition 3.4, there exists T > 0 such that, for any
u ∈ Hk with ‖u‖X(Ω) ≥ T , we have

(3.16) Jλk
(u) < −CR.

Hence, by (3.15) and (3.16) we conclude that

sup
u∈Hk

‖u‖X(Ω)=T

Jλk
(u) < −CR ≤ inf

u∈Pk+1

Jλk
(u),

so the functional Jλk
satisfies the geometric assumption (I3) and (I4) of [33, The-

orem 4.6]. Moreover, by Proposition 3.8 Jλk
satisfies the Palais-Smale condition.
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Then the Saddle Point Theorem ([33, Theorem 4.6]) provides the existence of a
critical point u ∈ X(Ω) for the functional Jλk

with

Jλk
(u) ≤ max

v∈Hk
‖u‖

X(Ω)≤T

Jλk
(v).

The case (F−∞) can be treated similarly considering the following decomposition:

X(Ω) = H−
k ⊕

(

H0
k ⊕ Pk+1

)

,

where H−
k is the finite dimensional subspace while Pk+1⊕H0

k is the infinite dimen-
sional one. Reasoning as above, by using (3.5) in place of (3.4) from Proposition
3.4, we conclude the proof of the theorem. �

Remark 3.9. Assumption (fbc) covers the case f(x, 0) 6= 0. This implies that
the trivial solution is not allowed for this type of nonlinearities, like f(x, t) =

e−t2sign(t).

Concerning the multiplicity result stated in Theorem 1.3, its proof is an easy
corollary of Theorem 3.10 below.

Proof of Theorem 1.3. We consider first the following decomposition

X(Ω) = H−
k ⊕

(

H0
k ⊕ Pk+1

)

.

As before, we can assume that λ = λk < λk+1 for some k ∈ N. We now consider
the sphere of radius r > 0 in the finite dimensional subspace Hk, namely

S :=
{

u ∈ Hk : ‖u‖X(Ω) = r
}

.

By Lemma 2.7 (since u ∈ S ⊂ Hk) and (Fpos), if r > 0 is small enough, being the
norms in L∞(Ω) and in X(Ω) equivalent, as Hk is finite dimensional, we get

sup
u∈S

Jλk
(u) < 0.

This fact, coupled with the lower bound on Jλk
(u) for u ∈ H0

k ⊕ Pk+1 established

in (3.15), allows to apply Theorem 3.10 with E = X(Ω) and Ẽ = H0
k ⊕Pk+1, which

yields the desired conclusion, since γ(S) = dim(Hk) (see [30, Remark 5.62]). �

Appendix

We recall some basic facts about the Krasnoselskii genus and an abstract result
due to Rabinowitz.

Let A ⊂ R
N be a closed and symmetric set. The genus γ(A) of A is defined as the

least integer n (if it exists) such that there is an odd function f ∈ C(A,Rn \ {0}).
Set Σ := {A ⊂ R

N : A is closed and symmetric}.

Theorem 3.10 (Theorem 1.9, [32]). Let E be a real Banach space and let I ∈
C1(E,R) be even with I(0) = 0 and satisfy the Palais-Smale condition at any level.

Suppose further that

1. there exists a closed subspace Ẽ ⊂ E of codimension j and a constant b such

that I|Ẽ ≥ b, and

2. there exists A ∈ Σ with γ(A) = m > j and supA I < 0.

Then I possesses at least m− j distinct pairs of nontrivial critical points.
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