Estimating connectivity among fragmented habitat patches is crucial for evaluating the functionality of ecological networks. However, current estimates of landscape resistance to animal movement and dispersal lack landscape-level data on local habitat structure. Here, we used a landscape genetics approach to show that high-fidelity habitat structure maps derived from Light Detection and Ranging (LiDAR) data critically improve functional connectivity estimates compared to conventional land cover data. We related pairwise genetic distances of 128 Capercaillie (Tetrao urogallus) genotypes to least-cost path distances at multiple scales derived from land cover data. Resulting ? values of linear mixed effects models ranged from 0.372 to 0.495, while those derived from LiDAR ranged from 0.558 to 0.758. The identification and conservation of functional ecological networks suffering from habitat fragmentation and homogenization will thus benefit from the growing availability of detailed and contiguous data on three-dimensional habitat structure and associated habitat quality.

Milanesi P., Holderegger R., Bollmann K., Gugerli F., Zellweger F. (2017). Three-dimensional habitat structure and landscape genetics: A step forward in estimating functional connectivity. ECOLOGY, 98(2), 393-402 [10.1002/ecy.1645].

Three-dimensional habitat structure and landscape genetics: A step forward in estimating functional connectivity

Milanesi P.;
2017

Abstract

Estimating connectivity among fragmented habitat patches is crucial for evaluating the functionality of ecological networks. However, current estimates of landscape resistance to animal movement and dispersal lack landscape-level data on local habitat structure. Here, we used a landscape genetics approach to show that high-fidelity habitat structure maps derived from Light Detection and Ranging (LiDAR) data critically improve functional connectivity estimates compared to conventional land cover data. We related pairwise genetic distances of 128 Capercaillie (Tetrao urogallus) genotypes to least-cost path distances at multiple scales derived from land cover data. Resulting ? values of linear mixed effects models ranged from 0.372 to 0.495, while those derived from LiDAR ranged from 0.558 to 0.758. The identification and conservation of functional ecological networks suffering from habitat fragmentation and homogenization will thus benefit from the growing availability of detailed and contiguous data on three-dimensional habitat structure and associated habitat quality.
2017
Milanesi P., Holderegger R., Bollmann K., Gugerli F., Zellweger F. (2017). Three-dimensional habitat structure and landscape genetics: A step forward in estimating functional connectivity. ECOLOGY, 98(2), 393-402 [10.1002/ecy.1645].
Milanesi P.; Holderegger R.; Bollmann K.; Gugerli F.; Zellweger F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/927436
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact