After centuries of population decline and range contraction, gray wolves (Canis lupus) are now expanding in Europe. Understanding wolf social structure and population dynamics and predicting their future range expansion is mandatory to design sound conservation strategies, but field monitoring methods are difficult or exceedingly expensive. Noninvasive genetic sampling offers unique opportunities for the reliable monitoring of wolf populations. We conducted a 9-year-long monitoring program in a large area (approximately 19,171 km 2) in northern Italy, aiming to identify individuals, estimate kinship, reconstruct packs, and describe their dynamics. Of 5,065 biological samples (99% scats), we genotyped and sexed 44% reliably using 12 unlinked autosomal microsatellites, 4 Y-linked microsatellites, and a diagnostic mitochondrial DNA control-region sequence. We identified 414 wolves, 88 dogs, and 16 wolf × dog hybrids. Wolves in the study area belonged to at least 42 packs. We reconstructed the genealogy of 26 packs. The mean pack size was 5.6 ± 2.4 SD, including adoptees, with a mean minimum pack home range of 74 km2 ± 52 SD. We detected turnovers of breeding pairs in 19% of the packs. Reproductive wolves were unrelated and unrelated dispersers founded new packs, except for 1 pack founded by a brother-sister pair. We did not detect multiple breeding females in any packs. Overall, the population was not inbred. We found significant isolation by distance and spatial autocorrelation, with nonrandom genetic structure up to a distance of approximately 17 km. We detected 37 dispersers, 14 of which became breeders in new or already existing packs. Our results can be used to model habitat use by wolves, to estimate survival rates, to predict future expansion of the wolf population, and to build risk maps of wolf-human conflicts. © 2014 American Society of Mammalogists.

Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population / Caniglia Romolo; Fabbri Elena ; Galaverni Marco; Milanesi Pietro; Randi Ettore. - In: JOURNAL OF MAMMALOGY. - ISSN 0022-2372. - ELETTRONICO. - 95:1(2014), pp. 41-49. [10.1644/13-MAMM-A-039]

Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population

Caniglia Romolo;Fabbri Elena;Galaverni Marco;Milanesi Pietro;Randi Ettore
2014

Abstract

After centuries of population decline and range contraction, gray wolves (Canis lupus) are now expanding in Europe. Understanding wolf social structure and population dynamics and predicting their future range expansion is mandatory to design sound conservation strategies, but field monitoring methods are difficult or exceedingly expensive. Noninvasive genetic sampling offers unique opportunities for the reliable monitoring of wolf populations. We conducted a 9-year-long monitoring program in a large area (approximately 19,171 km 2) in northern Italy, aiming to identify individuals, estimate kinship, reconstruct packs, and describe their dynamics. Of 5,065 biological samples (99% scats), we genotyped and sexed 44% reliably using 12 unlinked autosomal microsatellites, 4 Y-linked microsatellites, and a diagnostic mitochondrial DNA control-region sequence. We identified 414 wolves, 88 dogs, and 16 wolf × dog hybrids. Wolves in the study area belonged to at least 42 packs. We reconstructed the genealogy of 26 packs. The mean pack size was 5.6 ± 2.4 SD, including adoptees, with a mean minimum pack home range of 74 km2 ± 52 SD. We detected turnovers of breeding pairs in 19% of the packs. Reproductive wolves were unrelated and unrelated dispersers founded new packs, except for 1 pack founded by a brother-sister pair. We did not detect multiple breeding females in any packs. Overall, the population was not inbred. We found significant isolation by distance and spatial autocorrelation, with nonrandom genetic structure up to a distance of approximately 17 km. We detected 37 dispersers, 14 of which became breeders in new or already existing packs. Our results can be used to model habitat use by wolves, to estimate survival rates, to predict future expansion of the wolf population, and to build risk maps of wolf-human conflicts. © 2014 American Society of Mammalogists.
2014
Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population / Caniglia Romolo; Fabbri Elena ; Galaverni Marco; Milanesi Pietro; Randi Ettore. - In: JOURNAL OF MAMMALOGY. - ISSN 0022-2372. - ELETTRONICO. - 95:1(2014), pp. 41-49. [10.1644/13-MAMM-A-039]
Caniglia Romolo; Fabbri Elena ; Galaverni Marco; Milanesi Pietro; Randi Ettore
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/927294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 93
social impact