Bayesian networks are widely used probabilistic graphical models, whose structure is hard to learn starting from the generated data. O’Gorman et al. have proposed an algorithm to encode this task, i.e., the Bayesian network structure learning (BNSL), into a form that can be solved through quantum annealing, but they have not provided an experimental evaluation of it. In this paper, we present (i) an implementation in Python of O’Gorman’s algorithm, (ii) a divide et impera approach that allows addressing BNSL problems of larger sizes in order to overcome the limitations imposed by the current architectures, and (iii) their empirical evaluation. Specifically, several problems with an increasing number of variables have been used in the experiments. The results have shown the effectiveness of O’Gorman’s formulation for BNSL instances of small sizes, and the superiority of the divide et impera approach on the direct execution of O’Gorman’s algorithm.

Zardini E., Rizzoli M., Dissegna S., Blanzieri E., Pastorello D. (2022). RECONSTRUCTING BAYESIAN NETWORKS ON A QUANTUM ANNEALER. QUANTUM INFORMATION & COMPUTATION, 22(15-16), 1320-1350 [10.26421/QIC22.15-16-4].

RECONSTRUCTING BAYESIAN NETWORKS ON A QUANTUM ANNEALER

Pastorello D.
2022

Abstract

Bayesian networks are widely used probabilistic graphical models, whose structure is hard to learn starting from the generated data. O’Gorman et al. have proposed an algorithm to encode this task, i.e., the Bayesian network structure learning (BNSL), into a form that can be solved through quantum annealing, but they have not provided an experimental evaluation of it. In this paper, we present (i) an implementation in Python of O’Gorman’s algorithm, (ii) a divide et impera approach that allows addressing BNSL problems of larger sizes in order to overcome the limitations imposed by the current architectures, and (iii) their empirical evaluation. Specifically, several problems with an increasing number of variables have been used in the experiments. The results have shown the effectiveness of O’Gorman’s formulation for BNSL instances of small sizes, and the superiority of the divide et impera approach on the direct execution of O’Gorman’s algorithm.
2022
Zardini E., Rizzoli M., Dissegna S., Blanzieri E., Pastorello D. (2022). RECONSTRUCTING BAYESIAN NETWORKS ON A QUANTUM ANNEALER. QUANTUM INFORMATION & COMPUTATION, 22(15-16), 1320-1350 [10.26421/QIC22.15-16-4].
Zardini E.; Rizzoli M.; Dissegna S.; Blanzieri E.; Pastorello D.
File in questo prodotto:
File Dimensione Formato  
BN_on_QA.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/926045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact