
Quantum Information and Computation, Vol. 22, No. 15&16 (2022) 1320–1350

© Rinton Press

RECONSTRUCTING BAYESIAN NETWORKS

ON A QUANTUM ANNEALER

ENRICO ZARDINI

Department of Information Engineering and Computer Science

University of Trento
via Sommarive 9, 38123 Povo, Trento, Italy

enrico.zardini@unitn.it

MASSIMO RIZZOLI

Department of Information Engineering and Computer Science

University of Trento
via Sommarive 9, 38123 Povo, Trento, Italy

SEBASTIANO DISSEGNA

Department of Information Engineering and Computer Science

University of Trento
via Sommarive 9, 38123 Povo, Trento, Italy

ENRICO BLANZIERI

Department of Information Engineering and Computer Science

University of Trento

via Sommarive 9, 38123 Povo, Trento, Italy

Trento Institute for Fundamental Physics and Applications

via Sommarive 14, 38123 Povo, Trento, Italy

DAVIDE PASTORELLO

Department of Information Engineering and Computer Science
University of Trento

via Sommarive 9, 38123 Povo, Trento, Italy

Trento Institute for Fundamental Physics and Applications
via Sommarive 14, 38123 Povo, Trento, Italy

Received April 14, 2022
Revised October 26, 2022

1320

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1321

Bayesian networks are widely used probabilistic graphical models, whose structure is

hard to learn starting from the generated data. O’Gorman et al. have proposed an

algorithm to encode this task, i.e., the Bayesian network structure learning (BNSL), into
a form that can be solved through quantum annealing, but they have not provided an

experimental evaluation of it. In this paper, we present (i) an implementation in Python

of O’Gorman’s algorithm, (ii) a divide et impera approach that allows addressing BNSL
problems of larger sizes in order to overcome the limitations imposed by the current

architectures, and (iii) their empirical evaluation. Specifically, several problems with

an increasing number of variables have been used in the experiments. The results have
shown the effectiveness of O’Gorman’s formulation for BNSL instances of small sizes, and

the superiority of the divide et impera approach on the direct execution of O’Gorman’s

algorithm.

Keywords: Bayesian Network Structure Learning, Quantum Annealing, Quantum Soft-

ware, Empirical Evaluation

1 Introduction

Bayesian networks (BNs) are graphical probabilistic models in which the joint density distri-

bution of multiple random variables is represented over a directed acyclic graph [1]. In detail,

each variable corresponds to a node of the graph, and the overall joint density distribution

is obtained by multiplying the conditional density distribution of each variable given its par-

ents on the graph. As a consequence, the topology of the graph defines the independence

conditions, i.e., a variable is independent of its non-descendants given its parents. BNs are

widely used for representing uncertain domains and their structure allows for probabilistic

reasoning. Obtaining a BN representation from data is a learning task with a long history;

in particular, the subtask of learning the topology, also known as BN reconstruction, has re-

ceived much attention [2], especially when BNs are used to represent causal relationships [3].

Moreover, some recent papers have dealt with the possible application of quantum computing

to Bayesian networks [4, 5, 6].

Quantum computing (QC) is a kind of computation that exploits quantum mechanical phe-

nomena for information processing, and, nowadays, working quantum computers are available

on the market [7]. QC will have an impact on artificial intelligence and machine learning.

Indeed, it has the potentiality to allow efficient solutions to many of the search and optimiza-

tion problems encountered in these fields. In the last years, some applications of quantum

computing to Bayesian networks have been proposed, such as the following: a method for

learning the structure of a BN using a quantum annealer [4]; an algorithm for Bayesian infer-

ence based on amplitude amplification, which is a quantum version of the classical rejection

sampling algorithm used for inference in Bayesian networks [5]; a systematic method for de-

signing a quantum circuit to represent a generic discrete BN [6]. In particular, the proposal

of O’Gorman et al. [4] considers a quantum annealing architecture instead of a gate-based

quantum computer. Quantum annealing is a type of heuristic search for solving optimization

problems by finding the low-energy states of a quantum system [8], and quantum anneal-

ers are non-universal specific-purpose quantum computers implementing quantum annealing.

The advantage of the existing quantum annealers lies in the high number of qubits w.r.t. the

available prototypes of general-purpose quantum computers. The paper by O’Gorman et al.

describes an effective encoding of the BN reconstruction problem into a quantum annealer ar-

1322 Reconstructing Bayesian networks on a quantum annealer

chitecture. However, no implementation and empirical evaluation on a real quantum machine

are provided.

In this paper, we present an empirical evaluation of the proposal of O’Gorman et al. in

order to assess its practical applicability using the available architectures. Since the problem

encoding and the subsequent embedding in the quantum architecture limit the direct applica-

tion to around 18 Bayesian variables (at time of writing), we also propose a divide et impera

approach to overcome this limitation. Both the original algorithm and the new scheme have

been tested on different problems with a growing number of variables. The code is available

under the GPLv2 licence [9, 10].

The paper is organized as follows: Section 2 provides some background information; Sec-

tion 3 describes the implementation of O’Gorman’s algorithm [4]; Section 4 presents the divide

et impera approach; Section 5 is devoted to the empirical evaluation; Section 6 contains the

concluding remarks.

2 Background

This section provides information about QUBO problems, quantum annealing and D-Wave,

the embedding into quantum processing units (QPUs), the Bayesian network structure learn-

ing problem, and O’Gorman’s QUBO algorithm [4] to address it.

2.1 QUBO problems

Quadratic Unconstrained Binary Optimization (QUBO) problems are optimization problems

of the form

argmin
x

xTQx (1)

where x is a binary vector, and Q is an upper triangular (or symmetric) matrix of real values.

In particular, let x be an n × 1 vector and Q a n × n upper triangular matrix; then, it is

possible to rewrite the QUBO problem as follows:

xTQx =

n∑
i=1

qiix
2
i +

n∑
i=1

n∑
j=i+1

qijxixj

=
n∑

i=1

qiixi +

n∑
i=1

n∑
j=i+1

qijxixj (2)

where x2
i = xi since xi ∈ B = {0, 1}. In practice, the main diagonal of Q contains the

linear coefficients (qii), whereas the rest of the matrix contains the quadratic ones (qij).

Although QUBO problems are unconstrained by definition, it is actually possible to introduce

constraints by representing them as penalties. Several examples are provided by Glover et

al. [11].

The significance of the QUBO formulation mainly lies in its computational equivalence

with the Ising model, which is the physical model upon which annealers are built. The only

difference is the domain of variables: {0, 1} for the QUBO formulation, {−1,+1} for the Ising

one. Hence, by applying a trivial conversion, it is possible to exploit quantum annealers to

solve problems expressed as QUBO.

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1323

2.2 Quantum annealing and D-Wave machine

Quantum annealing (QA) is a heuristic search used to solve optimization problems [8]. The

solution of a given problem corresponds to the ground state (the less energetic physical state)

of a n-qubit system with energy described by a problem Hamiltonian HP , which is a Hermitian

2n× 2n matrix. The annealing procedure is implemented by a time evolution of the quantum

system towards the ground state of the problem Hamiltonian. More precisely, let us consider

the time-dependent Hamiltonian

H(t) = Γ(t)HD +HP , (3)

where HP is the problem Hamiltonian, and HD is the transverse field Hamiltonian, which

gives the kinetic term inducing the exploration of the solution landscape by means of quantum

fluctuations. Γ is a decreasing function that attenuates the kinetic term, driving the system

towards the global minimum of the problem landscape represented by HP .

QA can be physically realized by considering a quantum spin glass, which is a network of

qubits arranged on the vertices of a graph ⟨V,E⟩, with |V | = n and whose edges E represent

the couplings among the qubits. The problem Hamiltonian is defined as

HP = H(Θ) =
∑
i∈V

θiσ
(i)
z +

∑
(i,j)∈E

θijσ
(i)
z σ(j)

z , (4)

where the real coefficients θi, θij are arranged into the matrix Θ. H(Θ) is an operator on the

n-qubit Hilbert space H = (C2)⊗n, whereas σ
(i)
z acts as the Pauli matrix

σz =

(
1 0
0 −1

)
(5)

on the ith tensor factor and as the 2×2 identity matrix on the other tensor factors. Regarding

the coefficient matrix Θ, it is the n×n symmetric square matrix of real coefficients of E (called

weights) defined as

Θij :=

 θi, i = j,
θij , (i, j) ∈ E,
0, (i, j) ̸∈ E,

(6)

with θi physically corresponding to the local field on the ith qubit, and θij to the coupling

between the qubits i and j. In particular, the Pauli matrix σz has two eigenvalues {−1, 1},
which correspond to the binary states, spin down and spin up, of each qubit. Thus, the

spectrum of eigenvalues of the problem Hamiltonian (Eq. 4) is the set of all possible values of

the cost function given by the energy of the well-known Ising model :

E(Θ, z) =
∑
i∈V

θizi +
∑

(i,j)∈E

θijzizj , z = (z1, ..., zn) ∈ {−1, 1}|V |. (7)

In practice, the annealing procedure, also called cooling, drives the system into the ground

state of H(Θ), which corresponds to the spin configuration encoding the solution:

z∗ = arg min
z∈{−1,1}|V |

E(Θ, z). (8)

1324 Reconstructing Bayesian networks on a quantum annealer

Given a problem, the annealer is initialized using a suitable choice of the weights Θ, and the

binary variables zi ∈ {−1, 1} are physically realized by the outcomes of the measurements

performed on the qubits located in the vertices V . In order to solve a general optimization

problem through QA, it is first necessary to find an encoding of the objective function in

terms of the cost function (7), which is not easy in general.

D-Wave Systems is a Canadian company producing quantum annealers, i.e., physical ma-

chines implementing the quantum annealing process. Currently, the available models are the

D-Wave 2000Q, exploiting the Chimera topology, and the D-Wave Advantage, featuring the

Pegasus topology. The former has 2048 qubits, each connected to 6 other qubits, whereas the

latter has 5640 qubits, each connected to 15 other qubits. A higher amount of qubits allows

for larger problems to be submitted, but the most relevant feature is the connectivity, which

determines the complexity of the representable problems. For these reasons, the D-Wave

Advantage has been chosen for the experiments.

2.3 Quantum processing unit (QPU) embedding

To practically use quantum annealing for solving QUBO problems, the problem variables

must be mapped to the QPU qubits. However, due to the sparseness of the available annealer

topologies, a direct representation of the problem is typically not possible. The solution

consists in chaining together multiple physical qubits that will act as a single logical qubit.

In this way, the connectivity of the annealer graph is increased at the price of reducing

the number of logical qubits available and, consequently, the size of representable problems.

The entire process is known as embedding or minor embedding (in the glossary of D-Wave)

[12, 13]. In particular, D-Wave’s Ocean library provides the EmbeddingComposite class [14]

to automatically perform the minor embedding of the supplied QUBO matrices, and a new

embedding is computed for every annealer read.

2.4 Bayesian network structure learning (BNSL)

A Bayesian network (BN) is a directed acyclic graph (DAG) representing the conditional

dependencies of a set of random variables. In particular, the nodes of the graph represent the

variables, whereas the edges represent the conditional dependencies between them. Moreover,

each node is associated with the conditional probability distribution of the node itself given

its parents.

The method proposed by O’Gorman et al. [4] focuses on the network structure learn-

ing (BNSL) problem, which consists in finding the Bayesian network that most likely has

generated a given set of data. The problem is NP-Complete [15], and the authors expect a

polynomial speedup using quantum annealing. In detail, to take advantage of the new tech-

nology, a hardware compatible QUBO formulation of the BNSL problem is provided in the

paper together with sufficient lower bounds for the penalties.

More formally, a Bayesian network can be defined as a pair (Bs, Bp), where Bs is a DAG

and Bp is the set of associated conditional probabilities. Then, given a database D = {xi|1 ≤
i ≤ N} with xi representing the state of all variables, the objective consists in finding the

structure that maximises the posterior probability distribution p(Bs|D). However, due to the

proportionality of p(Bs|D) and p(D|Bs) by Bayes’ theorem, it is possible to reformulate the

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1325

problem as maximizing p(D|Bs), which is given by

p(D|Bs) =

n∏
i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)
, (9)

where Γ is the gamma function, qi is the number of joint states of the parent set of the i-th

random variable, ri is the number of states of the random variable itself, Nijk is the number

of occurrences in D with the i-th random variable in its k-th state and the variable’s parent

set in its j-th state, αijk is the hyperparameter of the assumed Dirichlet prior for the node’s

conditional probability distribution, Nij and αij are the sums of the corresponding parameter

values over k.

2.4.1 QUBO formulation of BNSL

In their work [4], O’Gorman et al. provide a Hamiltonian function for the BNSL problem.

Given the BNSL Hamiltonian, the construction of the QUBO matrix is straightforward: it is

sufficient to map the coefficients of the variables into the matrix entries. In particular, the

BNSL Hamiltonian consists of three components: the score Hamiltonian (Hscore), which is

responsible for evaluating the quality of the solution graph; the max Hamiltonian (Hmax),

which is in charge of penalising the solutions including nodes with a number of parents greater

than m, a constraint dictated by resource limits; the cycle Hamiltonian (Hcycle), further

divided in consistency Hamiltonian (Hconsist) and transitivity Hamiltonian (Htrans), which

penalises the solutions containing cycles. Hence, the full Hamiltonian (H) is given by

H(d,y, r) = Hscore(d) +Hmax(d,y) +Hcycle(d, r), (10)

where d corresponds to the n(n − 1) bits used to represent the presence/absence of edges

between nodes, whereas y and r are additional variables exploited to encode the constraints.

Score Hamiltonian

The score Hamiltonian (Hscore) is calculated separately for each variable, and the components

are then summed together. In detail, the score Hamiltonian for the i-th variable is given by

H(i)
score(di) =

∑
|J|≤m

J⊂{1..n}\{i}

wi(J)
∏
j∈J

dji

 , (11)

where di includes all the bits (dji) encoding edges towards the considered node, m is the

largest allowed size for the parent set, and wi is computed as follows:

wi(J) =

|J|∑
l=0

(−1)|J|−l
∑

|K|=l
K⊂J

si(K), (12)

with si being a score value obtained from Eq. (9), introducing a logarithm for numerical

efficiency. Specifically, si is given by

si(Πi(Bs)) = − log

 qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)

 , (13)

1326 Reconstructing Bayesian networks on a quantum annealer

where Πi(Bs) denotes the parent set of the i-th node. In practice, the sum of the si values is

equal to − log p(D|Bs).

Max Hamiltonian

Analogously to the score Hamiltonian, the max Hamiltonian is computed separately for each

variable as

H(i)
max(di,yi) = δ(i)max(m− di − yi)

2, (14)

where δ
(i)
max > 0 is the penalty weight, di is the in-degree of the considered node (given by∑

1≤j≤n∩ j ̸=i dji), and yi ∈ Z is a slack variable (encoded via binary expansion in yi using µ

bits a) that allows H
(i)
max being zero when the constraint is satisfied. Indeed, H

(i)
max is zero if

the considered node has at most m parents, otherwise it carries a positive penalty.

Cycle Hamiltonian

As mentioned previously, the cycle Hamiltonian is defined as the sum of two components:

Hcycle(d, r) = Htrans(r) +Hconsist(d, r), (15)

where r represents n(n−1)/2 additional boolean variables encoding a topological order (rij is

1 if the i-th node precedes the j-th one, 0 otherwise). In detail, the transitivity Hamiltonian

penalises the cycles of length three in the rij values, and is computed separately for each

possible 3-set of variables as

H
(ijk)
trans(rij , rjk, rik) = δ

(ijk)
trans (rik + rijrjk − rijrik − rjkrik) , (16)

where δ
(ijk)
trans is the positive penalty added if the i-th, j-th and k-th variables form a 3-cycle.

As in the previous cases, the H
(ijk)
trans components are summed up to obtain the full Htrans.

Instead, the consistency Hamiltonian penalises the solutions for which the topological order

contained in r is inconsistent with the graph structure encoded in d. In practice, it makes

disadvantageous the solutions in which rij = 1 and dji = 1, or rij = 0 and dij = 1. The

Hamiltonian is computed separately for each pair of variables as

H
(ij)
consist(dij , dji, rij) = δ

(ij)
consist(djirij + dij − dijrij), (17)

where δ
(ij)
consist is the positive penalty associated with the inconsistency. It is also worth

highlighting that the penalties δ
(ijk)
trans and δ

(ij)
consist are invariant to the permutation of the

superscript indices (the set of variables remains the same).

2.4.2 QUBO size and penalty values

The QUBO formulation of the BNSL problem consist of n(n − 1) binary variables (dij)

encoding the graph structure, nµ = n⌈log2(m + 1)⌉ binary slack variables (yil) related to

the maximum parent constraint, and n(n− 1)/2 binary variables (rij) encoding a topological

order (related to the absence of cycles constraint). Hence, the QUBO encoding of n Bayesian

variables requires O(n2) binary variables. Nevertheless, since Hscore contains multiplications

with m factors, if m ≥ 3, additional steps and slack variables are needed to convert the

a yi =
∑µ

l=1 2
l−1yil, with µ = ⌈log2(m+ 1)⌉

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1327

problem into a quadratic equation. For instance, according to O’Gorman et al., n⌊ (n−2)2

4 ⌋
binary slack variables are needed to reduce a BNSL problem with m = 3 to a quadratic form,

increasing the total number of binary variables to O(n3). In this work, only the formulation

for m = 2 has been used in the experiments, although some problems taken into account have

more than two parents per node.

Concerning the penalty values, O’Gorman et al. provide the following lower bounds (they

have also demonstrated their sufficiency):

δ(i)max > max
j ̸=i

∆ji, 1 ≤ i ≤ n, (18)

δ
(ij)
consist > (n− 2) max

k/∈{i,j}
δ
(ijk)
trans, 1 ≤ i < j ≤ n, (19)

δ
(ijk)
trans = δtrans > max

i′ ̸=j′
1≤i′,j′≤n

∆i′j′ , 1 ≤ i < j < k ≤ n, (20)

where ∆ji is an estimate of the largest increase in score due to the insertion of an arc from

the j-th to the i-th node. In the case of m = 2, it is given by

∆ji = max{0,∆′
ji}, (21)

∆′
ji = −wi({j})−

∑
k ̸=i,j

1≤k≤n

min{0, wi({j, k})}. (22)

Instead, for m ≥ 3, computing ∆ji becomes an intractable optimization problem.

3 O’Gorman’s Algorithm Implementation

A Python implementation of O’Gorman’s algorithm, which provides a way to build the QUBO

matrix for a BNSL problem, has been developed in this work. Since the D-Wave’s Ocean suite,

which is necessary for interacting with the quantum annealer, is implemented in Python, the

programming language in question has turned out to be the most reasonable choice. This

section provides the implementation details, some considerations about the complexity of the

implementation, and the description of a method to speed up the execution.

3.1 QUBO matrix construction

The pseudocode of the implementation of O’Gorman’s algorithm is shown in Algorithm 1,

which includes calls to Algorithms 2-3-4. In particular, the main algorithm takes as input the

number of Bayesian variables n, the number of states ri for each variable, and the dataset of

examples, and produces as output the QUBO matrix Q that represents the considered BNSL

problem.

Before effectively building the matrix, it is necessary to compute several intermediate

values. First, all possible parent sets (Πi(Bs) in O’Gorman’s formulation) are calculated for

each Bayesian variable. The maximum number of parents m has been set to two (for the

reasons explained in Section 2.4.2) and, as a consequence, the complexity of this step turns

out to be O(n3). It is also worth noticing that the empty set is a valid parent set.

After that, the αijk hyperparameters of the Dirichlet priors are set to the uninformative

value 1/(ri · qi), with ri being the number of states of the i-th variable and qi (denoted as

1328 Reconstructing Bayesian networks on a quantum annealer

Input: number of Bayesian variables n, list r = (ri)
n
i=1 with ri being the number of states of the ith

variable, dataset examples
Result: QUBO matrix Q
// calculation of the values needed to construct Q

1 parentSets← calcParentSets(n);
2 α← calcAlpha(n, r, parentSets);
3 s← calcS(n, r, parentSets, α, examples); // Algorithm 2

4 w ← calcW (n, parentSets, s); // Algorithm 3

5 ∆← calcDelta(n, parentSets, w); // Eq. (21) and (22)
6 δmax ← calcDeltaMax(n,∆); // Eq. (18)
7 δtrans ← calcDeltaTrans(n,∆); // Eq. (20)
8 δconsist ← calcDeltaConsist(n, δtrans); // Eq. (24)

// construction of Q
9 Q← zeroMatrix();

10 Q← fillQ(Q,n, parentSets, w, δmax, δtrans, δconsist); // Algorithm 4

11 return Q ;

Algorithm 1: calcQUBOMatrix(n, r, examples)

qiπ in the pseudocode) being the number of states of the considered parent set. In practice,

all αijk related to a specific variable i and parent set π (denoted as αiπjk in the pseudocode)

have the same value; further details about this choice are provided in Section 5.4. In this

step, the αijk value for all possible ”variable” - ”parent set” - ”parent set state” - ”variable

state” combinations must be generated; hence, the complexity is O(n3r3max), where rmax is

the maximum number of states of the Bayesian variables.

The next step consists in computing the local scores s for all possible ”Bayesian variable”

- ”parent set” combinations according to Eq. (13). Nevertheless, due to the factorial nature of

the Γ function and the presence of multiplications of Γ values, the calculations turn out to be

feasible only for very small datasets; indeed, the values quickly go out of range. The solution

lies in moving the logarithm inside through algebraic steps until its argument becomes the

gamma function alone. In the implementation presented here, the natural logarithm (ln) has

been used, and the resulting formula, the one employed in Algorithm 2, is the following:

si(Πi(Bs)) = −
qi∑

j=1

[
ln(Γ(αij))− ln(Γ(Nij + αij)) +

ri∑
k=1

[ln(Γ(Nijk + αijk))− ln(Γ(αijk))]
]
.

(23)

This form allows exploiting the (natural) log-gamma function (denoted as ln Γ in the pseu-

docode) instead of the gamma one, a function characterised by a far slower growth. Moreover,

by doing this, the products in Eq. (13) are replaced by additions, further decreasing the risk

of out of range values. Concerning the pseudocode, the calcNiπjk procedure just computes

the number of times the variable i is in its k-th state while its parent set π is in its j-th state

(in the case of an empty parent set, the state of the i-th variable alone is considered). The

complexity of the algorithm is O(n3Nr3max).

Once the score values s have been calculated, it is possible to compute the parent set

weights w for the score Hamiltonian according to (12). The pseudocode for this step is

available in Algorithm 3. As previously mentioned, the maximum number of allowed parents

has been set to two, hence the pseudocode does not take into account cases with larger parent

sets. The complexity of the algorithm for the computation of w is O(n3).

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1329

Input: number of Bayesian variables n, list of number of states r, list of parent sets parentSets,
prior distributions hyperparameters α = (αiπjk), dataset examples

Result: s = ({si(π) s.t. π ∈ parentSets[i]})ni=1 with si(π) being the score for the Bayesian variable
i given the parent set π

1 function calcSi(i, π, r, α, examples): // Eq. (23)
2 qiπ ←

∏
p∈π rp; // qiπ = 1 if π = ∅

3 sum← 0;
4 for j ← 1 to qiπ do
5 αiπj ←

∑ri
k=1 αiπjk;

6 Niπj ←
∑ri

k=1 calcNiπjk(examples, π, i, j, k, r);

7 sum← sum+ lnΓ(αiπj)− ln Γ(αiπj +Niπj);
8 for k ← 1 to ri do
9 Niπjk ← calcNiπjk(examples, π, i, j, k, r);

10 sum← sum+ lnΓ(αiπjk +Niπjk)− ln Γ(αiπjk);

11 end

12 end
13 return -sum;

14 for i← 1 to n do
15 for π ∈ parentSets[i] do
16 si(π)← calcSi(i, π, r, α, examples));
17 end

18 end
19 return s;

Algorithm 2: calcS(n, r, parentSets, α, examples)

Input: number of Bayesian variables n, list of parent sets parentSets, score values s
Result: w = ({wi(π) s.t. π ∈ parentSets[i]})ni=1 with wi(π) being the weight calculated for the

Bayesian variable i given the parent set π
1 function calcWi(i, π, s): // Eq. (12)
2 if π = ∅ then
3 return si(∅);
4 else if size(π) = 1 then
5 return si(π)− si(∅);
6 else if size(π) = 2 then
7 p1, p2 ← π[1], π[2];
8 return si(π)− si({p1})− si({p2}) + si(∅);
9 end

10 for i← 1 to n do
11 for π ∈ parentSets[i] do
12 wi(π)← calcWi(i, π, s);
13 end

14 end
15 return w ;

Algorithm 3: calcW(n, parentSets, s)

Eventually, the penalty values must be calculated, starting from the auxiliary quantities

∆, which are computed according to Eq. (21) and (22) with a complexity of O(n4); actually,

this complexity derives from the data structure used in the code to store the parent sets

(according to the formulas, the complexity would be O(n3)). Given ∆, all penalties can be

determined. In detail, δ
(i)
max is computed for each Bayesian variable according to (18) with

a resulting complexity (for all δ
(i)
max) of O(n2). Instead, the penalty bound related to the

consistency Hamiltonian (Eq. (19)) can be simplified due to independence of δtrans from its

1330 Reconstructing Bayesian networks on a quantum annealer

superscript indices. The outcome is the following:

δconsist > (n− 2)δtrans. (24)

In practice, δtrans is computed according to Eq. (20) with complexity O(n2) (notice that δtrans
is a single value). Then, δconsist is calculated according to the simplified bound (Eq. (24))

with complexity O(1). In order to satisfy the lower bounds, the penalty values have been set

to the boundary values plus one.

At this point, it is possible to fill the QUBO matrix Q as shown in Algorithm 4; the matrix,

whose size has been already described in Section 2.4.2, initially contains only zeros (see line 9

of Algorithm 1, whose complexity is O(n4)). In detail, the first section of Algorithm 4 (lines

2-12) is related to the score Hamiltonian, namely, to Eq. (11). For each ”Bayesian variable” -

”parent set” combination, the parent set weight wi(π) (wi(J) in O’Gorman’s formulation) is

added to the appropriate cell; the outermost loop, which includes almost all the pseudocode,

is the one iterating on the Bayesian variables. In practice, the coefficients of the linear terms

of Eq. (11), i.e., the terms involving only one QUBO variable (dji), are summed to cells

of Q located on the main diagonal. Instead, the coefficients of the quadratic terms, which

involve two QUBO variables (dxidyi), contribute to cells outside the diagonal; indeed, the

first variable determines the row, while the other the column. The subsequent part of the

algorithm is related to the max Hamiltonian (lines 13-25), i.e., to Eq. (14). The approach used

for the coefficient insertion is similar to that employed for the score Hamiltonian, however the

presence of a square must be taken into account. Hence, for each Bayesian variable (outermost

loop), the binary variables involved in Eq. (14) and their coefficients inside the square are

determined and stored in two lists (lines 14-15). Then, based on the square expansion, the

resulting linear and quadratic coefficients (which include the multiplication by δ
(i)
max) are

summed to the respective cells. Finally, there is the section related to the transitivity and

consistency Hamiltonians (lines 26-43), namely, to Eq. (16) and (17). In this case, due to the

small amount of terms in the formulas and the absence of squares, the procedure is simpler.

In detail, lines 28-35 sum the coefficients given by Eq. (16) to the corresponding locations

for each set of three Bayesian variables (Htrans penalties). Analogously, lines 37-42 add

the coefficients given by Eq. (17) to the appropriate cells for any pair of Bayesian variables

(Hconsist penalties). The resulting complexity for the matrix filling procedure (Algorithm 4)

is O(n3).

It is also worth mentioning that, in the QUBO matrix Q, the variables are ordered in

the following way: first, the binary variables encoding the edges (dij); then, the binary

slack variables (yil) related to the maximum parent constraint; finally, the binary variables

(rij) encoding the topological order. By sorting appropriately the variables in the quadratic

terms (they define the row and column indices), the outcome is an upper triangular matrix;

otherwise, the content of the non-zero cells below the main diagonal should be transferred to

the corresponding cells above the diagonal (summing up the values).

3.2 Complexity

The overall complexity of the QUBO matrix construction (Algorithm 1) is O(n4+n3Nr3max).

Hence, it is determined by several factors: the number of Bayesian variables (n) of the consid-

ered BNSL problem, the number of examples (N) in the dataset, and the maximum number

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1331

Input: zero matrix Q, number of Bayesian variables n, list of parent sets parentSets, parent set
weights w, list of penalty values δmax, penalty value δtrans, penalty value δconsist

Result: QUBO matrix Q filled according to Hscore, Hmax, Htrans, and Hconsist

1 for i← 1 to n do

/* Hscore-related terms (Eq. (11)) */

2 for π ∈ parentSets[i] do
3 if size(π) = 1 then // diagonal elements

4 j ← π[1];
5 row ← col← indexOf(dji);
6 Q[row][col]← Q[row][col] + wi(π);

7 else if size(π) = 2 then // out-of-diagonal elements

8 x, y ← π[1], π[2];
9 row, col← indexOf(dxi), indexOf(dyi);

10 Q[row][col]← Q[row][col] + wi(π);

11 end

12 end

/* Hmax-related terms (Eq. (14)) */

13 m← 2; // max. num. of parents

14 sqBinV ars← binaryV arsInSquare(); // di and yi in (14) are sums of binary vars

15 c← binaryV arsCoefficientsInSquare(); // the coefficients are either -1 or -2

16 for j ← 1 to size(sqBinV ars) do
17 row ← col← indexOf(sqBinV ars[j]); // diagonal elements indices

18 Q[row][col]← Q[row][col] + δ
(i)
max · c[j]2; // squared term

19 Q[row][col]← Q[row][col] + δ
(i)
max · (2 ·m · c[j]); // double product with m

20 for k ← j + 1 to size(sqBinV ars) do // out-of-diagonal elements

21 row ← indexOf(sqBinV ars[j]);
22 col← indexOf(sqBinV ars[k]);

23 Q[row][col]← Q[row][col] + δ
(i)
max · (2 · c[j] · c[k]); // double product between vars

24 end

25 end

/* Hcycle-related terms */

26 for j ← i+ 1 to n do
/* Htrans-related terms (Eq. (16)) */

27 for k ← j + 1 to n do
28 row ← col← indexOf(rik);
29 Q[row][col]← Q[row][col] + δtrans; // rik coefficient (diagonal element)

30 row, col← indexOf(rij), indexOf(rjk);
31 Q[row][col]← Q[row][col] + δtrans; // rij · rjk coefficient

32 row, col← indexOf(rij), indexOf(rik);
33 Q[row][col]← Q[row][col]− δtrans; // rij · rik coefficient

34 row, col← indexOf(rik), indexOf(rjk);
35 Q[row][col]← Q[row][col]− δtrans; // rik · rjk coefficient

36 end

/* Hconsist-related terms (Eq. (17) */

37 row, col← indexOf(dji), indexOf(rij);
38 Q[row][col]← Q[row][col] + δconsist; // dji · rij coefficient

39 row ← col← indexOf(dij);
40 Q[row][col]← Q[row][col] + δconsist; // dij coefficient (diagonal element)

41 row, col← indexOf(dij), indexOf(rij);
42 Q[row][col]← Q[row][col]− δconsist; // dij · rij coefficient

43 end

44 end
45 return Q ;

Algorithm 4: fillQ(Q, n, parentSets, w, δmax, δtrans, δconsist)

1332 Reconstructing Bayesian networks on a quantum annealer

of states (rmax) among the Bayesian variables. In particular, if the number of Bayesian vari-

ables is smaller than the dataset size, the dominant complexity term becomes n3Nr3max. The

situation just depicted is typical. Indeed, n cannot be too big due to the limitations (in the

number of qubits and connectivity) of the current quantum annealers, whereas N must be

considerably large to provide enough information to learn from. Therefore, typically, the cal-

culation of the local score values s (Algorithm 2) turns out to be the most expensive operation

in the QUBO matrix construction; otherwise, it would be the initialization of Q to zero (on a

par with the ∆ calculation, given the implementation of the operation in question). Concern-

ing the maximum number of states of the Bayesian variables, its contribution is particularly

relevant for Bayesian variables with continuous states. In fact, the variables in question must

be discretized, and the greater the representation accuracy, the higher the execution time.

3.3 Execution speedup

The construction of the QUBO matrix (including the intermediate values calculation) is what

takes most of the execution time. In general, a speedup could be obtained by using a different

programming language such as C++; nevertheless, this is not feasible here due to D-Wave’s

Ocean library, which is necessary to interface with the quantum annealer and is written in

Python. Instead, a valid solution consists in performing a dynamic compilation of the code

through Numba [16], a just-in-time compiler for Python. In detail, Numba requires to apply a

decorator to the functions that must be compiled. Then, during the execution, the first time

a function with a decorator is called, it is compiled into machine code, and all the subsequent

calls will run the machine code instead of the original Python code. It is important to notice

that Numba works better on code including loops, NumPy arrays and library functions.

Moreover, the speedup is effective only if a function is called several times; otherwise, in the

case of one call in a run, the execution will be slower.

Actually, Numba has been exploited only in the experiments related to the divide et impera

approach (Section 5.5), since it has been introduced after the completion of the experiments

related to O’Gorman’s algorithm (Section 5.4). It is also worth mentioning that the dynamic

compilation has been applied only to the two functions called most often in the execution

(i.e., calcNiπjk and another internal procedure).

4 Divide et Impera Approach

Embedding problems in the QPU topology requires a huge number of qubits due to the

limited connectivity of the current quantum annealers. Moreover, the QUBO formulation of

the BNSL problem proposed by O’Gorman et al. is densely connected by definition, making

infeasible its application even to instances with a not-so-high number of variables. For these

reasons, a divide et impera approach has been developed and tested; the pseudocode is shown

in Algorithm 5.

The first step is the subproblems formulation (lines 1-3). Let n be the number of variables

of the original BNSL problem, r be an array containing the number of states for each variable,

and examples be a N × n matrix representing the dataset. The BNSL subproblems are

generated as combinations of the n variables taken k at a time, where k represents the desired

number of variables for each subproblem. In detail, all possible combinations of variables

are generated, and each subproblem is identified by the (examples matrix column) indices

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1333

Input: number of variables of the original BNSL problem n, number of variables for each
subproblem k, list of number of states r, dataset examples

Output: adjacency matrix of the solution to the original problem sol

/* Subproblems formulation */

1 subproblems← combinations(n, k);
2 subproblemsR← filter(r, subproblems);
3 subproblemsEx← filter(examples, subproblems);

/* Subproblems solution */

4 S ← Set();
5 for i← 0 to size(subproblems) do
6 subprob, subprobR, subprobEx← subproblems[i], subproblemsR[i], subproblemsEx[i];
7 subprobQ← calcQUBOMatrix(size(subprob), subprobR, subprobEx); // Algorithm 1

8 subprobAdjMatrix← solveQUBO(subprobQ);
9 S.add(subprob, subprobAdjMatrix);

10 end

/* Original solution reconstruction */

11 C, P ← countEdgesAndPenalties(S, k);
12 sol← zeroMatrix();
13 for i← 0 to n do
14 for j ← 0 to n do
15 if i ̸= j then
16 if (Cij − Pij) > 0 and Cij > Cji then
17 sol[i][j] = 1;
18 end

19 end

20 end

21 end
22 return sol;

Algorithm 5: divideEtImpera(n, k, r, examples)

of the variables included. In practice, the combinations function from the Python itertools

module is used. The complexity of this procedure is O(c
(
n
k

)
), where c is the (constant) cost

for creating a list of indices. It is also worth mentioning that k should be larger or equal than

3 since that is the minimum reasonable number of variables for the QUBO encoding (Htrans

assumes n ≥ 3). Then, for each k-variables combination, it is necessary to filter the r vector

and the examples matrix, obtaining a vector of k elements and a N × k matrix, respectively.

The total complexity of the filtering operations is O(
(
n
k

)
(k +Nk)).

After the subproblems generation, the implementation of O’Gorman’s algorithm presented

in Section 3 can be applied to each subproblem (line 7), obtaining the respective QUBO

matrix, which can be submitted to the annealer or solved with alternative methods (line 8).

The outcome is an adjacency matrix for each subproblem. Regarding the complexity of this

step, it is linear with respect to the number of subproblems (
(
n
k

)
).

Eventually, the solution to the original BNSL problem must be reconstructed starting

from the subproblems solutions (lines 11-21). Let S be the set of all subproblems solutions,

where each solution consists of the list of indices of the variables included and an adjacency

matrix for the corresponding graph. The relevant information here is the presence of edges,

thus the first step consists in counting how many times each edge appears in the subproblems

solutions. Indeed, each pair of variables is present in more than one subproblem. Let C be

the set of counts, with Cij representing the number of appearances of the (i, j) edge (the

1334 Reconstructing Bayesian networks on a quantum annealer

edges are directed, hence (i, j) and (j, i) are different). After the counting phase, whose

complexity is O(
(
n
k

)
k2), the reconstruction of the solution can start. Actually, two strategies

have been developed for this. The first one (the simplest one) consists in inserting in the

adjacency matrix of the original problem every edge (i, j) that appears at least one time

in one subproblem, i.e., for which Cij > 0. If both Cij and Cji are larger than 0, then

the edge with the highest number of counts is picked; in this way, cycles of two nodes are

avoided (the resulting graph must be a DAG). Instead, the second strategy (the one shown in

the pseudocode) requires additional information to perform the reconstruction, namely, the

penalty values Pij . Basically, Pij represents the number of subproblems including the variables

i and j in which the edge (i, j) is not present; hence, the computation complexity is the same

as for C. In practice, an edge (i, j) is added to the final solution if (i) the difference between

Cij and Pij is larger than 0 and (ii) Cij is larger than Cji, otherwise it is discarded. Note

that, if these conditions are satisfied, so are those of the first method (Cij > 0 and Cij > Cji).

In the experiments presented in the next section, only the second strategy has been exploited,

since some preliminary experiments have confirmed its superiority. Concerning the resulting

complexity of the reconstruction phase, it is O(
(
n
k

)
k2 + n2).

5 Empirical Evaluation

This section deals with the Bayesian problems selected, the datasets generation procedure

employed, the methods tested, the experimental setup, and the results obtained for both

O’Gorman’s algorithm and the divide et impera approach.

5.1 Bayesian problems

Three out of the four Bayesian problems used have been selected from the examples provided

by the Bayes Server site [17], whereas the last one (the Lung Cancer) has been taken from a

different source [18]. In detail, the implementation of O’Gorman’s algorithm has been tested

on the Monty Hall, the Lung Cancer and the Waste problem. Instead, the divide et impera

approach has been tested on the Lung Cancer, the Waste, and the Alarm problem. It is also

worth highlighting that most of these problems have been subjected to some modifications

(explained in the following paragraphs) before applying the presented methods.

Monty Hall Problem

The Monty Hall Problem (MHP) has been chosen because of its simplicity. In detail, the

Bayesian network of the problem (see Figure 1, on the left) is composed of three variables

(n = 3), and each variable has three possible states ({1, 2, 3}). Actually, three is also the

minimum reasonable number of variables for O’Gorman’s QUBO formulation. Indeed, the

transitivity Hamiltonian is based on the assumption that at least three Bayesian variables are

present.

Lung Cancer

The Lung Cancer problem has been selected due to its (not excessively) higher number of

variables with respect to the MHP. In particular, the original network (LC) consists of n = 5

variables and each Bayesian variable admits two possible states. Actually, also a variant

(LC4Vars) with n = 4 variables obtained by removing the ”Dyspnoea” node has been tested

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1335

Fig. 1. Monty Hall Problem (left) and Lung Cancer (right).

here. In this way, a more accurate analysis on the problem size scaling could be performed.

Both networks are shown in Figure 1 (right).

Waste

The Waste problem has been chosen for different reasons: it has a considerably larger size

than the previous two; it includes continuous Bayesian variables, and also a variable with more

than two parents. In detail, the Bayesian network of the original problem is composed of nine

variables (n = 9), of which three are discrete with two states, and six are continuous. Since

the QUBO encoding admits only discrete variables, a discretization has been required for the

continuous ones. However, it is not possible to use a single discretization threshold because the

variables have different mean values. Hence, each continuous variable has been transformed

into a discrete one with two states by applying the following procedure: first, the lowest and

the highest values are identified by evaluating all the settings of the parent variables (this is

possible since the number of variables and states is small), and the average of the two values is

kept as a discretization threshold; then, for each combination of parent states, the mean and

Fig. 2. Waste.

1336 Reconstructing Bayesian networks on a quantum annealer

the variance of the continuous variable are taken down, and the probability of the Gaussian

with these parameters having a value higher than the threshold is set as the probability of

the high state (H, opposed to the low state L). Specifically, to determine the lowest (highest)

value, the respective variance is subtracted from (summed to) the minimum (maximum) mean

value observed; moreover, in the case of a continuous variable with a continuous parent, the

parent is discretized first, and the lowest and highest values are used as evidence for the parent

states L and H. The resulting Bayesian problem is denoted here as Waste.

Figure 2 summarizes all the considered variants of the problem. In particular, Waste

differs from the original problem only in the lack of the edge between Waste Type and Filter

Efficiency, which has been lost in the discretization procedure. Instead, in Waste2P (variant

of Waste), the edge between Waste Type and Dust Emission has been removed so that the

maximum number of parents is equal to two (in practice, the most balanced probability values

have been kept for the Dust Emission node). Finally, Waste2PDep is a variant of Waste2P in

which the edge between Waste Type and Filter Efficiency has been reintroduced by manually

altering some probability values (in the Filter Efficiency probability table). In addition, in

Waste2PDep, some other probabilities have been slightly changed (Dust Emission and Metals

Emission tables) in order to have more balanced probability distributions.

Alarm

Eventually, Alarm has been picked mainly for its size. Indeed, it is quite close to the maxi-

mum BNSL problem size that can be embedded in the Pegasus topology using O’Gorman’s

formulation (≈ 18). Moreover, the presence of a variable with four parents allows evaluating

the ability of the divide et impera approach to reconstruct Bayesian networks with more than

two parents for a single variable. Actually, the original Alarm problem consists of 38 Bayesian

variables, whereas the version used here includes only 15 of them (with their structure pre-

served). The Bayesian network employed in the experiments is shown in Figure 3.

5.2 Datasets generation

For each problem, several datasets have been generated varying both the size and the creation

method. Specifically, three dataset sizes (N) have been used, namely, 104 (10K), 105 (100K),

and 106 (1M). Regarding the generation methods, two have been employed. The first one

consists in generating N examples through the uniform function from the Python random

module by sampling from the network probability distribution. Instead, the second method

aims at generating datasets with zero variance, i.e., with combinations of states appearing ex-

actly the expected amount of times. In particular, in order to generate the expected datasets,

the probability p of every combination of states of the network variables is calculated; then, for

each combination, ⌊N ∗p⌋ examples are inserted in the dataset. Actually, for some probability

values, it may not be possible to generate an integer number of examples, and, consequently,

the variance of the dataset is not exactly zero. In addition, the resulting dataset may have

a number of samples lower than the desired one. For instance, for the Alarm problem, the

dataset of size N = 104 generated using this method has a considerably lower number of sam-

ples (≈ 9000) due to the presence of many state combinations that are not represented at all

because of their very low probability values (the other problems datasets are not significantly

affected by this issue). The datasets generated using the second method are denoted as Exp.

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1337

F
ig
.
3
.
A
la
rm

.

1338 Reconstructing Bayesian networks on a quantum annealer

5.3 Methods and experimental setup

After the application of O’Gorman’s algorithm, the BNSL problem encoded in the QUBO

matrix must be solved. For this purpose, three methods have been exploited in the exper-

iments: quantum annealing (QA), simulated annealing (SA) and exhaustive search (ES).

The functioning of quantum annealing has been already explained in Section 2.2. Instead,

simulated annealing is a well-known classical metaheuristic technique used for solving opti-

mization problems [19]; further details about the algorithm can be found here b. Eventually,

the exhaustive search represents an optimized brute force approach.

In detail, a simple brute force on the QUBO representation would be unfeasible even for

small BNSL instances due to the high number of binary variables. Hence, ES limits the brute

force to the edge binary variables dij , while considering only the best setup of yil and rij .

In particular, for each Bayesian variable i, the yil binary variables must be set so that yi (in

Eq. (14)) is equal to the difference between m and di. In this way, there is no penalty from

the max Hamiltonian. Obviously, this is possible only for nodes that do not have more than

m parents; otherwise, the minimum penalty is given by yi equal to zero. Instead, setting the

rij binary variables is more complex. Indeed, computing the topological order of the graph

encoded in dij is not enough since, if two Bayesian variables i and j are not connected (i.e.,

it does not exist a path from one variable to the other), there is no straightforward setup for

rij . In addition, setting all the uncertain binary variables to either 0 or 1 does not solve the

problem since a cycle might be produced, with consequent penalty from Htrans. The solution

consists in completing the graph encoded in dij by adding one edge at a time (while verifying

that no cycle is formed), and then computing the topological order of the resulting graph. In

this way, it is possible to properly set all rij binary variables and avoid any penalty from the

cycle Hamiltonian. Obviously, if the graph encoded in dij contains a cycle, it is not possible

to avoid the penalty. The resulting complexity for setting yil and rij turns out to be O(n3)

for sparse graphs and O(n4) for dense graphs. In the end, these optimizations do not change

the complexity class of ES with respect to the simple brute force (it remains exponential in

the number of Bayesian variables n) but significantly reduce the number of operations to be

performed. Another improvement that has been introduced in ES is the parallelization of the

solutions evaluation.

Regarding the setup for the experiments on the implementation of O’Gorman’s algorithm,

different combinations of annealing parameters (number of annealer reads and annealing time)

[20] have been tested for QA; the specific values are reported in the various results sections.

In addition, the default annealing schedule has been employed (the system used is Advantage

1.1), and the QPU embedding has been performed through the EmbeddingComposite class

(see Section 2.3). As concerns SA, the implementation provided by D-Wave [21] has been

exploited. Except for the number of reads (different values have been employed), the default

configuration has been used, and the execution has been carried out on a local machine.

Eventually, ES does not require to set parameters and has also been executed locally. In

detail, a machine with a quad-core CPU (Intel i5-6400) and 16 GB of RAM has been used for

the datasets generation, the QUBO matrices construction, and the execution of the classical

methods.

Concerning the divide et impera approach, only one configuration of annealing parameters

b https://en.wikipedia.org/wiki/Simulated_annealing

https://en.wikipedia.org/wiki/Simulated_annealing

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1339

has been evaluated for QA; the reason and the values are specified in the related results section.

Furthermore, the default annealing schedule has been employed, but, in this case, the system

used is Advantage 4.1 since the previous model had already been dismissed. Instead, the

QPU embedding method and the SA implementation are the same as those exploited in the

experiments on O’Gorman’s algorithm; the only difference lies in the number of reads used

for SA, which has been set to a single value too. Finally, ES has not been evaluated on this

approach due to its high time requirements. All the classical operations for the divide et

impera approach have been executed on a machine with a quad-core CPU (Intel i7-7700HQ)

and 16 GB of RAM.

Eventually, it is worth mentioning that, for both the implementation of O’Gorman’s al-

gorithm and the divide et impera approach, the performance-related analyses presented here

involve only Exp datasets because some preliminary tests have confirmed that the difference

in terms of performance when working on Exp or non-Exp datasets is negligible.

5.4 O’Gorman’s algorithm results

Several experiments have been performed on the implementation of O’Gorman’s algorithm.

The results obtained are presented in the subsequent paragraphs.

QUBO formulation correctness and αijk hyperparameters

The QUBO encoding must accurately represent the original BNSL problem; to this end, the

αijk hyperparameters must be set appropriately. In detail, if αijk have suitable values, the

image (xTQx) of the expected solution will be the global minimum. To verify this, it is

necessary to find the global minimum solution through ES and compare it with the expected

one. In particular, the QUBO version of the expected solution (x) is obtained as follows: the

Bayesian network that has been used to generate the dataset is exploited to set the dij binary

variables encoding the edges, whereas the best setup of yil and rij is found using the same

approach employed by ES (see Section 5.3).

Since the objective is to learn the structure of a Bayesian network from a set of data,

the values of αijk must be uninformative, i.e., they must not encode information about the

target Bayesian network. For this reason, the first values of αijk that have been tested are

N/(ri · qi) and 1, as proposed by Heckerman et al. [22]. The results obtained are reported

in Table 1. In detail, the first alternative (N/(ri · qi)) has performed decently on the MHP

problem (the smallest one), and extremely bad on all the others (characterised by a higher

number of variables); in practice, N prior counts uniformly distributed among all ”variable”

- ”parent set” state combinations are added in Eq. (13). Instead, the second possibility (i.e.,

1) has not worked at all. Therefore, other values have been evaluated, namely, 1/(ri · qi) and
1/ri, which have been selected with the idea of influencing the counts as little as possible. As

reported in the same table, both of them have shown the desired behaviour, and the first one

has been chosen as the default setup.

In particular, the ratios in Table 1 have been obtained using 8 datasets for each ”problem”

- ”αijk value” combination; the datasets in question have been created with different sizes

and exploiting both generation methods (see Section 5.2). Specifically, four datasets of size

N = 104 (of which one Exp), two datasets of size N = 105 (of which one Exp), and two

datasets of size N = 106 (of which one Exp) have been used.

1340 Reconstructing Bayesian networks on a quantum annealer

Table 1. Ratio of the number of times in which the best and the expected solutions coincide to

the number of tests (8 for each cell), for different problems and αijk values.

Problem αijk = N/(ri · qi) αijk = 1 αijk = 1/(ri · qi) αijk = 1/ri
MHP 0.75 0.00 1.00 1.00

LC4Vars 0.00 0.00 1.00 1.00
LC 0.00 0.00 1.00 1.00

Dataset size and QUBO matrix construction time

After the choice of the αijk value, the impact of the dataset size on the QUBO matrix

construction time has been analysed. As shown in Table 2, the required time increases

linearly with the dataset size in accordance with the complexity O(n4 + n3Nr3max) discussed

in Section 3.2. In practice, large dataset sizes turn out to be prohibitive, especially when

constructing the QUBO matrix for problems with a high number of variables. Because of this

and the fact that a dataset size larger than N = 104 leads to no improvement in terms of

performance (see Table 3), it is advantageous to keep the dataset size limited.

Regarding the tables data, the time values in Table 2 have been obtained using one Exp

and four non-Exp datasets for each ”problem” - ”dataset size” combination (hence, five runs

for each entry). Instead, the values in Table 3 have been acquired through QA, using Exp

datasets only, 104 reads, 20µs of annealing time, and 10 runs for each dataset size. The metric

reported in the second table is described in the performance section later on; for the time

being, it is sufficient to know that larger values in the table correspond to better performance.

Table 2. Average QUBO matrix (Q) construction time in seconds, for different problems and

dataset sizes. For each entry, 5 different datasets (of which one Exp) have been used.

Problem N = 104 N = 105 N = 106

MHP 0.55 4.03 40.03
LC4Vars 0.64 5.86 58.78

LC 1.40 13.55 136.21
Waste 9.79 98.85 1010.30

Waste2P 9.74 98.78 1001.96
Waste2PDep 9.77 100.26 1007.61

Table 3. Average solution value found by QA in Waste2PDep on Exp datasets of different sizes.
104 reads, 20µs of annealing time, and 10 runs (for each dataset size) have been used.

Problem N = 104 N = 105 N = 106

Waste2PDep 0.963 0.960 0.965

Number of reads and annealing time (QA)

The number of reads, i.e., measurements, and the annealing time per read are two extremely

relevant parameters for the performance of QA. Hence, an extensive experimental evaluation

has been performed, with 10 runs for each configuration; the results are reported in Table 4.

In detail, the maximum allowed number of reads (on D-Wave systems) is 104, whereas the

maximum annealing time per read is 2000µs. However, there is also an internal constraint

that prevents an annealing time larger than 999µs with 103 reads, and an annealing time

larger than 99µs with 104 reads. Looking at the results, it is clear that a higher number of

reads provides better performance, and the same holds for the annealing time. Nevertheless,

the number of reads has a more significant impact. Indeed, the results achieved with the

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1341

maximum allowed number of reads and an annealing time far lower than the joint limit are

clearly better than those achieved with the annealing time maximized. Hence, the best setup

corresponds to the maximum allowed number of reads (104) and the joint limit annealing

time (99µs).

Table 4. Ratio of the number of times the global minimum is found by QA to the number of
experiments (10 for each configuration), for different numbers of reads and annealing times on the

LC Exp dataset with size N = 104.

Annealing time (µs)
reads # 1 10 20 50 99 999

103 — 0.00 — — — 0.10
104 0.00 0.20 0.20 0.40 0.50 —

Performance

Finally, all the methods described in Section 5.3 have been applied to all the problems pre-

sented in Section 5.1 with the purpose of comparing their performance; the results are reported

in Table 5. In particular, for these experiments, Exp datasets of size N = 104 have been em-

ployed. Moreover, 104 reads have been used for SA, whereas, for QA, the best setup has

been exploited (i.e., 104 reads and an annealing time per read equal to 99µs). The number

of runs, for both SA and QA, is 10, and the success rate is given by the ratio between the

number of runs in which the expected solution has been discovered and the total number of

runs. Instead, the result value represents the ratio between the QUBO image (xTQx) of the

solution found and the QUBO image of the expected solution, averaged over the runs (larger

values correspond to better performance, since the image value of the expected solution is

always negative in these experiments). Regarding the time values, they include only the res-

olution of the QUBO matrix; specifically, in the case of QA, they correspond to the QPU

access time (see [23] for additional details). Eventually, for QA, the last column (Average #

exp. sol.) reports the number of times that the expected solution has been found in a single

run, averaged over the runs.

In practice, ES has outperformed both SA and QA on the smallest problems, i.e., MHP

and LC4Vars, always finding the minimum in less time. However, due to its exponential

complexity, it has lost the comparison on the LC problem (n = 5), and has turned out to be

too time-consuming on the largest ones.

Concerning the other methods, QA has always managed to find the optimum solution

to the problems with three and four Bayesian variables, also outperforming SA in terms of

execution time. Moreover, it has detected the global minimum several times in each run

Table 5. Comparison of ES, SA, and QA performances on different problems, using Exp datasets
of size N = 104, 104 reads for SA, and the best setup for QA (104 reads, 99 µs annealing time).

The number of runs, for both SA and QA, is 10.

Exhaustive search Simulated annealing Quantum annealing

n Problem
Success Avg. resol. Success Average Avg. sol. Success Average Avg. resol. Average #
rate time (s) rate result time (s) rate result time (s) exp. sol.

3 MHP 1.00 0.04 1.00 1.0000 3.40 1.00 1.0000 1.76 215.90
4 LC4Vars 1.00 0.42 1.00 1.0000 5.52 1.00 1.0000 1.77 11.40
5 LC 1.00 137.53 1.00 1.0000 8.93 0.50 0.9987 1.80 0.60
9 Waste — — 0.00 1.0145 12.85 0.00 0.9898 2.09 0.00
9 Waste2P — — 0.00 0.9999 13.15 0.00 0.9754 2.17 0.00
9 Waste2PDep — — 0.00 0.9998 12.39 0.00 0.9780 2.10 0.00

1342 Reconstructing Bayesian networks on a quantum annealer

(104 measurements per run are performed), which suggests that a fewer number of reads

could be enough to achieve the same results on these problems. Instead, for the five-variable

problem, QA has managed to discover the minimum only half of the times (with the minimum

occasionally appearing more than once), whereas SA has always found it at the cost of a

slightly higher runtime. Eventually, neither QA nor SA have ever detected the optimum

solution to the largest problems (n = 9). Nevertheless, the quality of the solutions found is

good on average, especially of those found by SA, whose execution time has turned out to

be slightly higher also in this case. It is also worth highlighting that, for the Waste problem,

solutions with a better score than that of the expected solution have been found; this has

always happened with SA (the average result value is larger than 1.0) and sometimes with

QA. The reason lies in the presence of a node with three parents in the expected solution.

Basically, this penalises the expected solution and makes possible to have other solutions

respecting the maximum parent constraint (m ≤ 2) with a better score.

In addition, the impact of the annealing time on the performance of QA in the same

experiments has been analysed; the results for an annealing time of 1µs and 99µs are reported

in Table 6. In practice, a higher annealing time has led to no improvement on the smallest

problem (MHP) but has provided better results on average, with only a little additional time

required, on all the others. In particular, for the problems with four (LC4Vars) and five

(LC) Bayesian variables, it has also provided a higher success rate and a higher number of

occurrences of the minimum solution.

Table 6. Comparison of quantum annealing performances on several problems for different values

of annealing time, using Exp datasets of size N = 104 and 104 reads. The number of runs is 10.

Annealing time per sample 1µs Annealing time per sample 99µs

n Problem
Success Average Avg. resol. Average # Success Average Avg. resol. Average #
rate result time (s) exp. sol. rate result time (s) exp. sol.

3 MHP 1.00 1.0000 0.78 304.70 1.00 1.0000 1.76 215.90
4 LC4Vars 0.90 0.9997 0.81 5.20 1.00 1.0000 1.77 11.40
5 LC 0.40 0.9980 0.87 0.50 0.50 0.9987 1.80 0.60
9 Waste 0.00 0.9619 1.15 0.00 0.00 0.9898 2.09 0.00
9 Waste2P 0.00 0.9473 1.15 0.00 0.00 0.9754 2.17 0.00
9 Waste2PDep 0.00 0.9633 1.33 0.00 0.00 0.9780 2.10 0.00

Eventually, since SA does not have limits on the number of reads, further experiments have

been executed on the Waste2PDep problem with the Exp dataset of size N = 104, using a

number of reads equal to 105 and 106, respectively. The execution time has increased linearly,

but no substantial improvement in the performance has been observed.

5.5 Divide et impera results

As mentioned in Section 5.1, the divide et impera approach has been tested on two problems

used for the evaluation of O’Gorman’s algorithm, namely, LC and Waste (only in their main

variant), and a new additional problem, i.e., Alarm. The results are presented in the following

paragraphs.

Execution speedup and timing

First of all, the speedup achieved exploiting the technique illustrated in Section 3.3 has been

analysed. In particular, for each problem taken into account, one Exp dataset of size N = 104

and one run have been used. Moreover, regarding the number of variables for each subproblem

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1343

Table 7. Speedup achieved for different k values on LC and Waste, using an Exp datasets of

size N = 104 and a single run. The time values, expressed in seconds, include the subproblems
formulation and the QUBO matrices construction. In particular, D.e.I. = divide et impera, O’G.

= O’Gorman.

Problem k Subproblems # Time (no speedup) Time (with speedup) Speedup

LC
(n = 5)

3 (D.e.I.) 10 27.66 4.54 6.09x
4 (D.e.I.) 5 54.4 4.55 11.96x
5 (O’G.) 1 21.41 3.84 5.58x

Waste
(n = 9)

3 (D.e.I.) 84 237.5 10.27 23.13x
4 (D.e.I.) 126 1754.35 32.62 53.78x
5 (D.e.I.) 126 2704.54 66.02 40.97x
6 (D.e.I.) 84 2907.48 78.8 36.90x
7 (D.e.I.) 36 2186.56 54.91 39.82x
8 (D.e.I.) 9 858.57 23.97 35.82x
9 (O’G.) 1 149.58 8.8 17x

(k), all values between three (the minimum reasonable value, see Section 4) and n have been

tested; it is also worth highlighting that k = n corresponds to the direct application of the

implementation of O’Gorman’s algorithm. The results are reported in Table 7, with the time

values including the subproblems formulation and the QUBO matrices construction (thus,

neither the subproblems resolution nor the final solution reconstruction). In detail, only LC

and Waste have been considered here, since the times without speedup for Alarm would have

been unfeasible to collect using the machine available. Concerning LC, the time required has

been reduced by ≈ 9 times on average for the divide et impera approach and ≈ 5.6 times for

O’Gorman’s algorithm. Instead, for the Waste problem, the speedup has been more significant

due to the higher number of variables and/or subproblems, with an average of ≈ 38.4 times

for the divide et impera approach and ≈ 17 times for O’Gorman’s algorithm.

Instead, Table 8 reports some statistics computed on analogous time values (including

subproblems formulation and QUBO matrices construction), which have been obtained using

four different non-Exp datasets of size N = 104. The Exp datasets have not been included

Table 8. Statistics on subproblems formulation and QUBO matrices construction time for different

k values. Specifically, 4 non-Exp datasets of size N = 104 have been used for each problem (one

run for each dataset). In addition, the time values, expressed in seconds, refer to the optimized
code (i.e., with speedup).

Problem k Subproblems # Average time STD time CV time
Average time

per subproblem
LC

(n = 5)
3 10 1.32 0.02 0.014 0.132
4 5 1.28 0.03 0.022 0.256

Waste
(n = 9)

3 84 3.72 0.15 0.040 0.044
4 126 8.89 0.10 0.011 0.071
5 126 16.54 0.28 0.017 0.131
6 84 18.80 0.22 0.012 0.224
7 36 13.55 0.16 0.012 0.376
8 9 5.92 0.13 0.022 0.658

Alarm
(n = 15)

3 455 26.68 0.20 0.007 0.059
4 1365 203.15 0.62 0.003 0.149
5 3003 1063.36 4.00 0.004 0.354
6 5005 2952.22 7.08 0.002 0.590
7 6435 6548.12 235.37 0.036 1.018
8 6435 10361.01 489.65 0.047 1.610
9 5005 11370.70 112.19 0.010 2.272

1344 Reconstructing Bayesian networks on a quantum annealer

since they may have a lower number of samples, as explained in Section 5.2. In this case, also

the Alarm problem has been considered; indeed, all the time values refer to the optimized code

(i.e., with speedup). However, due to the still high times, the maximum k value used for it is

9. Eventually, it is worth highlighting that the limit case corresponding to the direct execution

of O’Gorman’s algorithm (k = n) has not been taken into account here. In detail, the highest

average time across k values is determined by both the subproblems size and the number of

subproblems. Indeed, the average time per subproblem grows with the subproblems size (see

the last column). Moreover, looking at the standard deviation (STD) and the coefficient of

variation (CV), it turns out that the variance in the input data does not significantly affect

the time values. Specifically, the CV value is always lower than 0.05.

Performance

To evaluate the performance of the divide et impera approach, the following setup has been

used for each problem: one Exp dataset of size N = 104, five runs, and a number of variables

for each subproblem (k) ranging from three (the minimum reasonable value) to n (the total

number of Bayesian variables), with the upper limit representing the direct application of

O’Gorman’s algorithm. Regarding the methods for solving the QUBO encoding, only SA and

QA have been exploited in these experiments. Indeed, ES would have required an unreason-

able amount of time to solve the subproblems generated with a high k value. Furthermore,

100 reads and an annealing time equal to 1µs have been used for QA due to the limited

quantum resources available and the high number of subproblems to resolve (considering all

experiments). To make a fair comparison, 100 reads have been used also for SA. Eventually,

it is worth highlighting that only the second reconstruction strategy developed for the divide

et impera approach has been applied in these experiments, as explained in Section 4.

Starting from LC, the results achieved for it are reported in Table 9. In addition, a ”ROC

curve”-like plot is provided in Figure 4. In practice, SA has turned out to perform better

than QA on LC, and the divide et impera approach has outperformed the direct application

of O’Gorman’s algorithm for both resolution methods. Indeed, the higher the sensitivity and

Table 9. Results achieved by the divide et impera approach on the LC problem, for different

numbers of variables per subproblem (k) and methods (SA/QA), using an Exp dataset of size

N = 104, five runs, 100 reads for SA, and 100 reads and 1µs of annealing time for QA. The last
k value (5) corresponds to the direct application of the implementation of O’Gorman’s algorithm.

In particular, D.e.I. = divide et impera, O’G. = O’Gorman.

LC (n = 5, edges= 4)

k Method Metric # for each run # unique Average # Sensitivity Specificity

SA
Correct edges 2 2 4 4 3 4 3

0.75 0.94
3 Wrong edges 2 2 0 0 1 2 1

(D.e.I.)
QA

Correct edges 1 4 4 1 2 4 2.4
0.60 0.90

Wrong edges 3 0 0 3 2 4 1.6

SA
Correct edges 4 4 4 4 4 4 4

1.00 1.00
4 Wrong edges 0 0 0 0 0 0 0

(D.e.I.)
QA

Correct edges 3 3 3 3 2 4 2.8
0.70 0.90

Wrong edges 2 2 1 1 2 5 1.6

SA
Correct edges 3 4 3 3 2 4 3

0.75 0.89
5 Wrong edges 2 0 2 2 3 4 1.8

(O’G.)
QA

Correct edges 1 2 0 2 2 3 1.4
0.35 0.74

Wrong edges 5 5 6 2 3 11 4.2

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1345

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

SA (D.e.I.)
SA (O'G.)
QA (D.e.I.)
QA (O'G.)

Fig. 4. Sensitivity versus (1 - Specificity) for the LC problem. This plot results from the data

reported in Table 9.

the specificity, the better the result. It is also worth mentioning that SA with k = 4 has

been able to find the perfect solution (four correct and zero wrong edges) in all five runs. In

addition, by looking at the number of unique edges found across all runs (fifth column), it

turns out that, for the divide et impera approach, SA tends to find always the same correct

and wrong edges, whereas QA shows more variability, as well as O’Gorman’s algorithm.

Concerning the Waste problem, whose results are reported in Table 10 and displayed in

Figure 5, the overall performance is worse for both SA and QA. Specifically, also in this case,

SA has performed better than QA overall. Only for k = 3, QA has been able to achieve better

results on average. Instead, the superiority of the divide et impera approach w.r.t. the direct

application of O’Gorman’s algorithm has turned out to be less marked. In detail, for SA,

the divide et impera approach has won the comparison for almost all (but not all) k values.

Regarding QA, O’Gorman’s algorithm has achieved a relatively high sensitivity (w.r.t. all QA

results), but the corresponding specificity is quite low. In the end, for both methods (SA and

QA), it is possible to find a k value for which the divide et impera approach has performed

better than O’Gorman’s algorithm. Actually, for this problem, the perfect solution has never

been found. The best results have been achieved by SA with k = 6, which has discovered

four correct edges out of nine in almost all runs and only two wrong edges on average. In

addition, the maximum number of correct edges that have been found in a single run is equal

to 6 (SA with k = 4). However, it is worth remarking that the problem in question has been

subjected to a discretization procedure and includes a node with three parents. Eventually,

in general, the observations made for LC on the number of unique edges found turn out to be

valid also for the Waste problem. The only difference lies in the correct edges found by the

divide et impera approach with QA; indeed, they tend to be the same across runs.

1346 Reconstructing Bayesian networks on a quantum annealer

Table 10. Results achieved by the divide et impera approach on the Waste problem, for different

numbers of variables per subproblem (k) and methods (SA/QA), using an Exp dataset of size
N = 104, five runs, 100 reads for SA, and 100 reads and 1µs of annealing time for QA. The last k

value (9) corresponds to the direct application of the implementation of O’Gorman’s algorithm. In

particular, D.e.I. = divide et impera, O’G. = O’Gorman, Sens. = sensitivity, Spec. = specificity.

Waste (n = 9, edges= 9)

k Method Metric # for each run # unique Average # Sens. Spec.

SA
Correct edges 2 2 2 2 1 2 1.8

0.20 0.88
3 Wrong edges 8 7 7 8 9 10 7.8

(D.e.I.)
QA

Correct edges 1 4 3 4 2 6 2.8
0.31 0.90

Wrong edges 8 6 6 5 7 13 6.4

SA
Correct edges 2 6 2 3 2 6 3

0.33 0.94
4 Wrong edges 5 1 5 4 5 5 4

(D.e.I.)
QA

Correct edges 4 1 3 3 4 6 3
0.33 0.92

Wrong edges 4 7 4 5 5 10 5

SA
Correct edges 2 3 4 3 3 5 3

0.33 0.94
5 Wrong edges 5 4 3 2 4 7 3.6

(D.e.I.)
QA

Correct edges 3 5 2 0 1 5 2.2
0.24 0.94

Wrong edges 4 2 5 4 5 10 4.0

SA
Correct edges 4 4 4 4 3 5 3.8

0.42 0.97
6 Wrong edges 2 1 3 1 3 4 2

(D.e.I.)
QA

Correct edges 1 1 1 2 1 3 1.2
0.13 0.98

Wrong edges 1 2 1 0 2 5 1.2

SA
Correct edges 5 4 1 3 3 5 3.2

0.36 0.96
7 Wrong edges 1 1 5 3 3 6 2.6

(D.e.I.)
QA

Correct edges 0 0 0 1 0 1 0.2
0.02 0.97

Wrong edges 2 3 1 2 1 8 1.8

SA
Correct edges 2 1 4 5 2 5 2.8

0.31 0.96
8 Wrong edges 3 4 2 0 3 6 2.4

(D.e.I.)
QA

Correct edges 1 0 0 0 0 1 0.2
0.02 0.90

Wrong edges 4 8 6 6 7 25 6.2

SA
Correct edges 3 3 3 1 2 5 2.4

0.27 0.86
9 Wrong edges 9 8 8 9 9 25 8.6

(O’G.)
QA

Correct edges 2 2 3 3 4 7 2.8
0.31 0.77

Wrong edges 15 16 15 12 16 49 14.8

Finally, the results related to the Alarm problem are reported in Table 11 and shown in

Figure 6. In particular, the divide et impera approach with QA has not been evaluated in

this case because the number of subproblems is really high and the sequential submission

of numerous QUBO problems to the D-Wave’s annealer tends to fail due to connectivity

issues (from D-Wave’s side), invalidating the run. As for the other problems, the divide et

impera approach has outperformed the direct application of O’Gorman’s algorithm. Indeed,

the latter has won the comparison (with a worse specificity) only for k = 12. In addition, SA

has achieved far better results than O’Gorman’s algorithm with QA. Concerning the quality

of the solution found, the best results have been achieved by SA with k = 4, which has been

capable of detecting 12.6 correct edges out of 15 on average (note that the problem includes

a variable with four parents). However, the number of wrong edges is quite high (16.4 on

average). The same configuration has also discovered the highest number of correct edges

(13). Eventually, it is worth making two last observations: the number of edges (both correct

and wrong) detected by the divide et impera approach tends to decrease by increasing the

value of k; the divide et impera approach tends to discover always the same correct and

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1347

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

SA (D.e.I.)
SA (O'G.)
QA (D.e.I.)
QA (O'G.)

Fig. 5. Sensitivity versus (1 - Specificity) for the Waste problem. This plot results from the data

reported in Table 10.

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

SA (D.e.I.)
SA (O'G.)
QA (O'G.)

Fig. 6. Sensitivity versus (1 - Specificity) for the Alarm problem. This plot results from the data
reported in Table 11.

1348 Reconstructing Bayesian networks on a quantum annealer

Table 11. Results achieved by the divide et impera approach on the Alarm problem, for different

numbers of variables per subproblem (k), using an Exp dataset of size N = 104, five runs, 100
reads for SA, and 100 reads and 1µs of annealing time for QA. The last k value (15) corresponds

to the direct application of the implementation of O’Gorman’s algorithm. In particular, D.e.I. =

divide et impera, O’G. = O’Gorman, Sens. = sensitivity, Spec. = specificity.

Alarm (n = 15, edges= 15)

k Method Metric # for each run # unique Average # Sens. Spec.

3
SA

Correct edges 10 10 11 10 10 12 10.2
0.68 0.85

(D.e.I.) Wrong edges 31 31 30 29 28 38 29.8

4
SA

Correct edges 12 13 13 12 13 13 12.6
0.84 0.92

(D.e.I.) Wrong edges 17 16 17 16 16 20 16.4

5
SA

Correct edges 12 12 12 12 13 13 12.2
0.81 0.94

(D.e.I.) Wrong edges 13 13 13 12 12 15 12.6

6
SA

Correct edges 8 7 7 7 8 8 7.4
0.49 0.93

(D.e.I.) Wrong edges 14 14 14 14 13 14 13.8

7
SA

Correct edges 6 6 6 6 6 6 6
0.40 0.93

(D.e.I.) Wrong edges 13 13 13 13 13 13 13

8
SA

Correct edges 7 6 6 7 6 7 6.4
0.43 0.94

(D.e.I.) Wrong edges 11 11 11 11 12 12 11.2

9
SA

Correct edges 7 6 7 7 6 7 6.6
0.44 0.96

(D.e.I.) Wrong edges 8 9 7 7 9 10 8.0

10
SA

Correct edges 6 6 7 7 7 7 6.6
0.44 0.96

(D.e.I.) Wrong edges 9 8 8 7 7 9 7.8

11
SA

Correct edges 6 7 7 7 6 7 6.6
0.44 0.96

(D.e.I.) Wrong edges 8 8 8 8 9 9 8.2

12
SA

Correct edges 5 6 6 5 6 6 5.6
0.37 0.95

(D.e.I.) Wrong edges 9 9 8 9 9 10 8.8

13
SA

Correct edges 5 7 6 7 6 8 6.2
0.41 0.96

(D.e.I.) Wrong edges 9 6 8 7 7 9 7.4

14
SA

Correct edges 5 7 6 7 5 9 6
0.40 0.96

(D.e.I.) Wrong edges 10 8 6 6 7 11 7.4

SA
Correct edges 4 5 6 6 9 9 6

0.40 0.92
15 Wrong edges 18 16 16 16 15 55 16.2

(O’G.)
QA

Correct edges 2 4 5 7 1 12 3.8
0.25 0.80

Wrong edges 39 41 36 40 38 128 38.8

wrong edges across runs (look at the fifth column), whereas O’Gorman’s algorithm exhibits

more variability. Actually, the wrong edges for k = 3 and the correct edges for O’Gorman’s

algorithm with SA represent two exceptions.

6 Conclusion

In this work, we have presented an implementation in Python of the algorithm proposed by

O’Gorman et al. for solving the BNSL problem on a quantum annealer, a divide et impera

approach that allows addressing BNSL instances with a higher number of variables, a com-

plexity analysis of them, and their experimental evaluation. In detail, to make O’Gorman’s

formulation effectively usable, algebraic manipulations have been applied to the computation

of the local scores si(Πi(Bs)). Moreover, a simplified lower bound has been introduced for the

penalty value δconsist, and the best setup of the αijk hyperparameters has been empirically

determined. The results achieved in the experiments have demonstrated that O’Gorman’s

algorithm can be effectively used to reconstruct Bayesian networks of small sizes (n <= 5)

E. Zardini, M. Rizzoli, S. Dissegna, E. Blanzieri, and D. Pastorello 1349

with less than three parents per node (m < 3). Instead, in presence of more Bayesian vari-

ables (n = 9), the algorithm performance have turned out to be worse. Indeed, good quality

solutions (in terms of QUBO image value) have been found, but not the correct one. It is

also worth remarking that one of these larger problems includes a node with three parents.

In addition, the linear dependency between the dataset size and the QUBO matrix construc-

tion time has been confirmed. Eventually, QA (using the best annealing parameters) has

been able to achieve comparable or slightly worse results with respect to SA, proving the

competitiveness of the current annealing architectures on this task.

Concerning the divide et impera approach, which has been developed to overcome the

limitation on the problem size dictated by the available annealing devices, the results have

demonstrated that it performs better than the direct application of O’Gorman’s algorithm.

Indeed, in all problems considered, for all resolution methods tested, there is more than one

k value for which the divide et impera approach has achieved better results; actually, in

almost all cases, these k values represent the majority. Instead, in general, the quality (in

terms of resulting Bayesian network) of the solutions found has turned out to be not optimal.

However, non-ideal annealing parameters have been used for QA due to the limited quantum

resources at our disposal, and the number of reads for SA has also been reduced (w.r.t. the

value used for the experiments on O’Gorman’s algorithm) for a fair comparison. Moreover,

in this second set of experiments, unlike in the first one, SA has performed definitely better

than QA; nevertheless, this is probably related to the less-performing parameters used here.

Finally, the experiments on the subproblems formulation and QUBO matrices construction

time have confirmed the effectiveness of the technique used to speed up the execution (and

also the independence of the times from the variance in the input data).

Future work includes the following possibilities: testing the divide et impera approach on

Bayesian problems whose size is larger than the maximum size embeddable in the Pegasus

architecture using O’Gorman’s algorithm; evaluating the aforementioned approach with QA

using more-performing annealing parameters; analysing the impact of considering only part of

the subproblems of size k. We conclude by reminding that the code of both the implementation

of O’Gorman’s algorithm and the divide et impera approach is available under the GPLv2

licence [9, 10].

Acknowledgements

This work was supported by Q@TN, the joint lab between University of Trento, FBK-

Fondazione Bruno Kessler, INFN-National Institute for Nuclear Physics and CNR-National

Research Council. In addition, the authors gratefully acknowledge the Jülich Supercomputing

Center (https://www.fz-juelich.de/ias/jsc) for funding this project by providing com-

puting time through the Jülich UNified Infrastructure of Quantum computing (JUNIQ) on

the D-Wave quantum annealer.

References

1. J. Pearl (1985), Bayesian networks: A model of self-activated memory for evidential reasoning,
Proceedings of the 7th conference of the Cognitive Science Society, pp. 15-17.

2. P. Spirtes and C. Meek (1995), Learning Bayesian networks with discrete variables from data,
KDD, Vol.1, pp. 294-299.

https://www.fz-juelich.de/ias/jsc

1350 Reconstructing Bayesian networks on a quantum annealer

3. J. Pearl (1995), From Bayesian networks to causal networks, Mathematical models for handling
partial knowledge in artificial intelligence, pp. 157-182.

4. B. O’Gorman and R. Babbush and A. Perdomo-Ortiz and A. Aspuru-Guzik and V. Smelyanskiy
(2015), Bayesian Network Structure Learning Using Quantum Annealing, The European Physical
Journal Special Topics, Vol.224, Num.1, pp. 163–188.

5. M. Ozols and M. Roetteler and J. Roland (2013), Quantum rejection sampling, ACM Transactions
on Computation Theory (TOCT), Vol.5, Num.11.

6. S. E. Borujeni and S. Nannapaneni and N. H. Nguyen and E. C. Behrman and J. E. Steck (2021),
Quantum circuit representation of Bayesian networks, Expert Systems With Applications, Vol.176.

7. D-Wave Systems Inc., D-Wave Systems, https://www.dwavesys.com [online, last access on 23
February 2022].

8. T. Kadowaki and H. Nishimori (Nov 1998), Quantum annealing in the transverse Ising model,
Phys. Rev. E, Vol.58, pp. 5355-5363.

9. M. Rizzoli (2021), Implementation of O’Gorman’s algorithm, https://github.com/

massimo-rizzoli/BNSL-QA-python.
10. S. Dissegna (2021), Implementation of the divide et impera approach, https://github.com/

sebdisdv/BNSL.
11. F. Glover and G. Kochenberger and Y. Du (2019), Quantum Bridge Analytics I: a tutorial on

formulating and using QUBO models, 4OR - A Quarterly Journal of Operations Research, Vol.
17.

12. D-Wave Systems Inc., Minor embedding, https://docs.dwavesys.com/docs/latest/c_gs_3.

html#minor-embedding [online, last access on 20 October 2021].
13. D-Wave Systems Inc., Minor embedding example, https://docs.dwavesys.com/docs/latest/c_

gs_7.html#getting-started-embedding [online, last access on 20 October 2021].
14. D-Wave Systems Inc., Embedding Composite, https://docs.ocean.dwavesys.com/en/stable/

docs_system/reference/composites.html#embeddingcomposite [online, last access on 20 Oc-
tober 2021].

15. D. M. Chickering (1996), Learning Bayesian Networks is NP-Complete, Learning from Data: Ar-
tificial Intelligence and Statistics V, pp. 121-130.

16. Anaconda Inc. and others, Numba, compiling Python code with @jit, https://numba.

readthedocs.io/en/stable/user/jit.html [online, last access on 12 August 2021].
17. Bayes Server, Bayesian network examples, https://www.bayesserver.com/examples [online, last

access on 22 June 2021].
18. E. Correa and A. Freitas and C. Johnson (2007), Particle Swarm and Bayesian Networks Applied

to Attribute Selection for Protein Functional Classification, Proceedings of GECCO 2007: Genetic
and Evolutionary Computation Conference, pp. 2651-2658.

19. S. Kirkpatrick and C. D. Gelatt and M. P. Vecchi (1983), Optimization by Simulated Annealing,
Science, Vol.220, Num.4598, pp. 671-680.

20. D-Wave Systems Inc., D-Wave solver parameters, https://docs.dwavesys.com/docs/latest/c_
solver_parameters.html [online, last access on 20 October 2021].

21. D-Wave Systems Inc., D-Wave simulated annealing sampler, https://docs.ocean.dwavesys.com/
projects/neal/en/latest/reference/sampler.html [online, last access on 29 November 2021].

22. D. Heckerman and D. Geiger and D. M. Chickering (1995), Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data, Machine Learning, Vol.20, Num.3, pp. 197-243.

23. D-Wave Systems Inc., Operation and Timing, https://docs.dwavesys.com/docs/latest/c_qpu_
timing.html [online, last access on 13 December 2021].

https://www.dwavesys.com
https://github.com/massimo-rizzoli/BNSL-QA-python
https://github.com/massimo-rizzoli/BNSL-QA-python
https://github.com/sebdisdv/BNSL
https://github.com/sebdisdv/BNSL
https://docs.dwavesys.com/docs/latest/c_gs_3.html#minor-embedding
https://docs.dwavesys.com/docs/latest/c_gs_3.html#minor-embedding
https://docs.dwavesys.com/docs/latest/c_gs_7.html#getting-started-embedding
https://docs.dwavesys.com/docs/latest/c_gs_7.html#getting-started-embedding
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/composites.html#embeddingcomposite
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/composites.html#embeddingcomposite
https://numba.readthedocs.io/en/stable/user/jit.html
https://numba.readthedocs.io/en/stable/user/jit.html
https://www.bayesserver.com/examples
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.ocean.dwavesys.com/projects/neal/en/latest/reference/sampler.html
https://docs.ocean.dwavesys.com/projects/neal/en/latest/reference/sampler.html
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html

	Introduction
	Background
	QUBO problems
	Quantum annealing and D-Wave machine
	Quantum processing unit (QPU) embedding
	Bayesian network structure learning (BNSL)
	QUBO formulation of BNSL
	QUBO size and penalty values

	O'Gorman's Algorithm Implementation
	QUBO matrix construction
	Complexity
	Execution speedup

	Divide et Impera Approach
	Empirical Evaluation
	Bayesian problems
	Datasets generation
	Methods and experimental setup
	O'Gorman's algorithm results
	Divide et impera results

	Conclusion

