Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. So, the risk of not having enough energy stored to carry out the driving mission and then paying a fee is substantial. This work presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. The tests have been conducted with different initial SoC values for each strategy, showing a maximum error in the SoC prediction of 2.4% and up to 26.1% of CO2 saving with the A-ECMS.

Brunelli L., Capancioni A., Canè S., Cecchini G., Perazzo A., Brusa A., et al. (2023). A predictive control strategy based on A-ECMS to handle Zero-Emission Zones: Performance assessment and testing using an HiL equipped with vehicular connectivity. APPLIED ENERGY, 340, 1-17 [10.1016/j.apenergy.2023.121008].

A predictive control strategy based on A-ECMS to handle Zero-Emission Zones: Performance assessment and testing using an HiL equipped with vehicular connectivity

Brunelli L.
;
Capancioni A.;Canè S.;Brusa A.;Cavina N.
2023

Abstract

Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. So, the risk of not having enough energy stored to carry out the driving mission and then paying a fee is substantial. This work presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. The tests have been conducted with different initial SoC values for each strategy, showing a maximum error in the SoC prediction of 2.4% and up to 26.1% of CO2 saving with the A-ECMS.
2023
Brunelli L., Capancioni A., Canè S., Cecchini G., Perazzo A., Brusa A., et al. (2023). A predictive control strategy based on A-ECMS to handle Zero-Emission Zones: Performance assessment and testing using an HiL equipped with vehicular connectivity. APPLIED ENERGY, 340, 1-17 [10.1016/j.apenergy.2023.121008].
Brunelli L.; Capancioni A.; Canè S.; Cecchini G.; Perazzo A.; Brusa A.; Cavina N.
File in questo prodotto:
File Dimensione Formato  
brunelli post print.pdf

Open Access dal 07/04/2024

Tipo: Postprint
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/924168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact