Supported by some of the major revolutionary technologies, such as Internet of Vehicles (IoVs), Edge Computing, and Machine Learning (ML), the traditional Vehicular Networks (VNs) are changing drastically and converging rapidly into one of the most complex, highly intelligent, and advanced networking systems, mostly known as Intelligent Transportation System (ITS). Recently, distributed ML techniques, such as Federated Learning (FL) have gained huge popularity mainly for their advantages in terms of intelligence sharing and privacy concerns. VNs are a natural contender for exploiting FL for solving challenging problems; however, their limited resources, dynamic nature, high speed, and reduced latency requirements often become the bottleneck. V2X communication technologies allow vehicular terminals (VTs) to share their valuable local environment parameters and become aware of their surroundings. Such information can be utilized to build a more sustainable and affordable FL platform for serving VTs. Gaining from recently introduced 3D architectures, integrating terrestrial and aerial edge computing layers, we present here a distributed FL platform able to distribute the FL process on a 3D fashion while reducing the overall communication cost for providing vehicular services. The framework is defined as a constrained optimization problem for reducing the overall FL process cost through a proper network selection between various nodes. We have modeled the FL network selection problem as a sequential decision-making process through a Markov Decision Process (MDP) with time-dependent state transition probabilities. A computation-efficient value iteration algorithm is adapted for solving the MDP. Comparison with various benchmark methods shows the overall improvement in terms of latency, energy, and FL performance.

Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems / Shinde, Swapnil Sadashiv; Tarchi, Daniele. - In: IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. - ISSN 1524-9050. - ELETTRONICO. - 24:9(2023), pp. 10101681.9996-10101681.10011. [10.1109/TITS.2023.3265416]

Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems

Shinde, Swapnil Sadashiv
Primo
;
Tarchi, Daniele
2023

Abstract

Supported by some of the major revolutionary technologies, such as Internet of Vehicles (IoVs), Edge Computing, and Machine Learning (ML), the traditional Vehicular Networks (VNs) are changing drastically and converging rapidly into one of the most complex, highly intelligent, and advanced networking systems, mostly known as Intelligent Transportation System (ITS). Recently, distributed ML techniques, such as Federated Learning (FL) have gained huge popularity mainly for their advantages in terms of intelligence sharing and privacy concerns. VNs are a natural contender for exploiting FL for solving challenging problems; however, their limited resources, dynamic nature, high speed, and reduced latency requirements often become the bottleneck. V2X communication technologies allow vehicular terminals (VTs) to share their valuable local environment parameters and become aware of their surroundings. Such information can be utilized to build a more sustainable and affordable FL platform for serving VTs. Gaining from recently introduced 3D architectures, integrating terrestrial and aerial edge computing layers, we present here a distributed FL platform able to distribute the FL process on a 3D fashion while reducing the overall communication cost for providing vehicular services. The framework is defined as a constrained optimization problem for reducing the overall FL process cost through a proper network selection between various nodes. We have modeled the FL network selection problem as a sequential decision-making process through a Markov Decision Process (MDP) with time-dependent state transition probabilities. A computation-efficient value iteration algorithm is adapted for solving the MDP. Comparison with various benchmark methods shows the overall improvement in terms of latency, energy, and FL performance.
2023
Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems / Shinde, Swapnil Sadashiv; Tarchi, Daniele. - In: IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. - ISSN 1524-9050. - ELETTRONICO. - 24:9(2023), pp. 10101681.9996-10101681.10011. [10.1109/TITS.2023.3265416]
Shinde, Swapnil Sadashiv; Tarchi, Daniele
File in questo prodotto:
File Dimensione Formato  
Joint_Air-Ground_Distributed_Federated_Learning_for_Intelligent_Transportation_Systems.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 7.34 MB
Formato Adobe PDF
7.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/922474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact