We develop a semiparametric model to track a large number of quantiles of a time series. The model satisfies the condition of non-crossing quantiles and the defining property of fixed quantiles. A key feature of the specification is that the updating scheme for time-varying quantiles at each probability level is based on the gradient of the check loss function. Theoretical properties of the proposed model are derived such as weak stationarity of the quantile process and consistency of the estimators of the fixed parameters. The model can be applied for filtering and prediction. We also illustrate a number of possible applications such as: (i) semiparametric estimation of dynamic moments of the observables, (ii) density prediction, and (iii) quantile predictions.

Catania L., Luati A. (2023). Semiparametric modeling of multiple quantiles. JOURNAL OF ECONOMETRICS, 237(2, Part B, December 2023), 1-16 [10.1016/j.jeconom.2022.11.002].

Semiparametric modeling of multiple quantiles

Luati A.
2023

Abstract

We develop a semiparametric model to track a large number of quantiles of a time series. The model satisfies the condition of non-crossing quantiles and the defining property of fixed quantiles. A key feature of the specification is that the updating scheme for time-varying quantiles at each probability level is based on the gradient of the check loss function. Theoretical properties of the proposed model are derived such as weak stationarity of the quantile process and consistency of the estimators of the fixed parameters. The model can be applied for filtering and prediction. We also illustrate a number of possible applications such as: (i) semiparametric estimation of dynamic moments of the observables, (ii) density prediction, and (iii) quantile predictions.
2023
Catania L., Luati A. (2023). Semiparametric modeling of multiple quantiles. JOURNAL OF ECONOMETRICS, 237(2, Part B, December 2023), 1-16 [10.1016/j.jeconom.2022.11.002].
Catania L.; Luati A.
File in questo prodotto:
File Dimensione Formato  
MQuantile_FINAL.pdf

embargo fino al 31/12/2024

Descrizione: Accepted manuscript
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact