We develop a semiparametric model to track a large number of quantiles of a time series. The model satisfies the condition of non-crossing quantiles and the defining property of fixed quantiles. A key feature of the specification is that the updating scheme for time-varying quantiles at each probability level is based on the gradient of the check loss function. Theoretical properties of the proposed model are derived such as weak stationarity of the quantile process and consistency of the estimators of the fixed parameters. The model can be applied for filtering and prediction. We also illustrate a number of possible applications such as: (i) semiparametric estimation of dynamic moments of the observables, (ii) density prediction, and (iii) quantile predictions.
Catania, L., Luati, A. (2023). Semiparametric modeling of multiple quantiles. JOURNAL OF ECONOMETRICS, 237(2, Part B, December 2023), 1-16 [10.1016/j.jeconom.2022.11.002].
Semiparametric modeling of multiple quantiles
Luati A.
2023
Abstract
We develop a semiparametric model to track a large number of quantiles of a time series. The model satisfies the condition of non-crossing quantiles and the defining property of fixed quantiles. A key feature of the specification is that the updating scheme for time-varying quantiles at each probability level is based on the gradient of the check loss function. Theoretical properties of the proposed model are derived such as weak stationarity of the quantile process and consistency of the estimators of the fixed parameters. The model can be applied for filtering and prediction. We also illustrate a number of possible applications such as: (i) semiparametric estimation of dynamic moments of the observables, (ii) density prediction, and (iii) quantile predictions.File | Dimensione | Formato | |
---|---|---|---|
MQuantile_FINAL.pdf
Open Access dal 15/12/2024
Descrizione: Accepted manuscript
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.