Objectives: The novel carbapenem/β-lactamase inhibitor combination imipenem/cilastatin/relebactam has been developed for the treatment of infections due to carbapenemase-producing Enterobacteriaceae (CPE). Herein, we describe the in vivo evolution of imipenem/cilastatin/relebactam resistance in longitudinal intra-patient Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) strains isolated from a patient following ceftazidime/avibactam-based treatments. Methods: WGS analysis was performed on KPC-Kp strains isolated at different times and during antimicrobial treatments from the same patient. Genome assemblies were performed using a hybrid approach using Illumina iSeq 100 and Minion Oxford Nanopore platforms. Subpopulation analysis and allele frequency determination was performed by mapping Illumina reads to blaKPC. Results: During antimicrobial treatment, resistance to ceftazidime/avibactam was observed following 16 days of antimicrobial therapy. WGS results showed that all KPC-Kp exhibited a low SNP rate of divergence, belonged to ST512 and shared similar antimicrobial resistance and porin gene patterns. Genetic analysis demonstrated that the first ceftazidime/avibactam-resistant KPC-Kp strain harboured a blaKPC-53 gene in a Tn4401 transposon moved from IncFII(K) to a 43 kb IncX3 plasmid, while a imipenem/cilastatin/relebactam-resistant strain exhibited two copies of the Tn4401 transposon in IncFII(K) and IncX3 plasmids, resulting in an increased blaKPC copy number. Of note, frequency analysis demonstrated that imipenem/cilastatin/relebactam-resistant KPC-Kp consisted of mixed subpopulations harbouring blaKPC-40 and blaKPC-53 alleles. Conclusions: Our results show the in vivo evolution of genetic rearrangement conferring resistance to imipenem/relebactam in a patient with KPC-Kp infection and treated with different ceftazidime/avibactam-based treatments. The rapid development of mutations and the high adaptability of its genome highlight the potential threat of KPC-Kp.

Gaibani P, B.F. (2022). Dynamic evolution of imipenem/relebactam resistance in a KPC-producing Klebsiella pneumoniae from a single patient during ceftazidime/avibactam-based treatments. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 77(6), 1570-1577 [10.1093/jac/dkac100].

Dynamic evolution of imipenem/relebactam resistance in a KPC-producing Klebsiella pneumoniae from a single patient during ceftazidime/avibactam-based treatments

Gaibani P
Primo
;
Bovo F;Bussini L;Lazzarotto T;Bartoletti M;Viale P;Ambretti S.
Ultimo
2022

Abstract

Objectives: The novel carbapenem/β-lactamase inhibitor combination imipenem/cilastatin/relebactam has been developed for the treatment of infections due to carbapenemase-producing Enterobacteriaceae (CPE). Herein, we describe the in vivo evolution of imipenem/cilastatin/relebactam resistance in longitudinal intra-patient Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) strains isolated from a patient following ceftazidime/avibactam-based treatments. Methods: WGS analysis was performed on KPC-Kp strains isolated at different times and during antimicrobial treatments from the same patient. Genome assemblies were performed using a hybrid approach using Illumina iSeq 100 and Minion Oxford Nanopore platforms. Subpopulation analysis and allele frequency determination was performed by mapping Illumina reads to blaKPC. Results: During antimicrobial treatment, resistance to ceftazidime/avibactam was observed following 16 days of antimicrobial therapy. WGS results showed that all KPC-Kp exhibited a low SNP rate of divergence, belonged to ST512 and shared similar antimicrobial resistance and porin gene patterns. Genetic analysis demonstrated that the first ceftazidime/avibactam-resistant KPC-Kp strain harboured a blaKPC-53 gene in a Tn4401 transposon moved from IncFII(K) to a 43 kb IncX3 plasmid, while a imipenem/cilastatin/relebactam-resistant strain exhibited two copies of the Tn4401 transposon in IncFII(K) and IncX3 plasmids, resulting in an increased blaKPC copy number. Of note, frequency analysis demonstrated that imipenem/cilastatin/relebactam-resistant KPC-Kp consisted of mixed subpopulations harbouring blaKPC-40 and blaKPC-53 alleles. Conclusions: Our results show the in vivo evolution of genetic rearrangement conferring resistance to imipenem/relebactam in a patient with KPC-Kp infection and treated with different ceftazidime/avibactam-based treatments. The rapid development of mutations and the high adaptability of its genome highlight the potential threat of KPC-Kp.
2022
Gaibani P, B.F. (2022). Dynamic evolution of imipenem/relebactam resistance in a KPC-producing Klebsiella pneumoniae from a single patient during ceftazidime/avibactam-based treatments. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 77(6), 1570-1577 [10.1093/jac/dkac100].
Gaibani P, Bovo F, Bussini L, Lazzarotto T, Amadesi S, Bartoletti M, Viale P, Ambretti S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919293
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 6
social impact