In this brief note we discuss local Holder continuity for solutions to anisotropic elliptic equations of the typeSigma(s)(i=1) partial derivative(ii)u + Sigma(N)(i=s+1) partial derivative(i) (A(i)(x, u, del u) = 0, x is an element of Omega subset of subset of R-N for 1 <= s <= N-1,where each operator A(i) behaves directionally as the singular p-Laplacian, 1 < p < 2 and the supercritical condition p + (N-s)(p-2) > 0 holds true. We show that the Harnack inequality can be proved without the continuity of solutions and that in turn this implies Holder continuity of solutions.

Baldelli, L., Ciani, S., Skrypnik, I., Vespri, V. (2024). A NOTE ON THE POINT-WISE BEHAVIOUR OF BOUNDED SOLUTIONS FOR A NON-STANDARD ELLIPTIC OPERATOR. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 17(5-6), 1718-1732 [10.3934/dcdss.2022143].

A NOTE ON THE POINT-WISE BEHAVIOUR OF BOUNDED SOLUTIONS FOR A NON-STANDARD ELLIPTIC OPERATOR

Ciani, S
;
Vespri, V
2024

Abstract

In this brief note we discuss local Holder continuity for solutions to anisotropic elliptic equations of the typeSigma(s)(i=1) partial derivative(ii)u + Sigma(N)(i=s+1) partial derivative(i) (A(i)(x, u, del u) = 0, x is an element of Omega subset of subset of R-N for 1 <= s <= N-1,where each operator A(i) behaves directionally as the singular p-Laplacian, 1 < p < 2 and the supercritical condition p + (N-s)(p-2) > 0 holds true. We show that the Harnack inequality can be proved without the continuity of solutions and that in turn this implies Holder continuity of solutions.
2024
Baldelli, L., Ciani, S., Skrypnik, I., Vespri, V. (2024). A NOTE ON THE POINT-WISE BEHAVIOUR OF BOUNDED SOLUTIONS FOR A NON-STANDARD ELLIPTIC OPERATOR. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 17(5-6), 1718-1732 [10.3934/dcdss.2022143].
Baldelli, L; Ciani, S; Skrypnik, I; Vespri, V
File in questo prodotto:
File Dimensione Formato  
2206.06799.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 358.62 kB
Formato Adobe PDF
358.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact