We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prorotypes are the p-Laplacean and the doubly-nonlinear equation, via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates.
Ciani Simone, Vespri Vincenzo (2020). A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 41(3-4), 251-264.
A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations
Ciani Simone;Vespri Vincenzo
2020
Abstract
We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prorotypes are the p-Laplacean and the doubly-nonlinear equation, via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ciani Vespri Rendiconti.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
335.12 kB
Formato
Adobe PDF
|
335.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.