We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prorotypes are the p-Laplacean and the doubly-nonlinear equation, via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates.

Ciani Simone, Vespri Vincenzo (2020). A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 41(3-4), 251-264.

A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations

Ciani Simone;Vespri Vincenzo
2020

Abstract

We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prorotypes are the p-Laplacean and the doubly-nonlinear equation, via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates.
2020
Ciani Simone, Vespri Vincenzo (2020). A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 41(3-4), 251-264.
Ciani Simone; Vespri Vincenzo
File in questo prodotto:
File Dimensione Formato  
Ciani Vespri Rendiconti.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 335.12 kB
Formato Adobe PDF
335.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/918929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact