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A new short proof of regularity for local weak solutions for
a certain class of singular parabolic equations
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Abstract. We shall establish the interior Hölder continuity for locally bounded weak solutions
to a class of parabolic singular equations whose prototypes are

ut = ∇ ·
(
|∇u|p−2∇u

)
, for 1 < p < 2, (0.1)

and
ut −∇ · (um−1|∇u|p−2∇u) = 0, for m + p > 3−

p

N
, (0.2)

via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack

estimates.

1. Introduction

Equations of the kind of (0.1) are termed singular since, the modulus of ellip-
ticity |∇u|p−2 becomes infinitely big as the weak gradient of the function |∇u|
approaches zero. Regularity theory and in particular the study of Hölder conti-
nuity for such singular parabolic equations has been pioneered by Y.Z. Chen and
E. Di Benedetto in [1], [2]. The singular approach is more difficult than the de-
generate one, i.e. when p > 2 where the modulus of ellipticity tends to vanish.
A detailed study for the class of degenerate parabolic equations of p-Laplacean
type has been extensively treated in the monograph [4]. The method developed
to achieve the continuity of local weak solutions of both degenerate and singular
equations of these kind bears the name of intrinsic scaling. This approach was
introduced by E. DiBenedetto (see the monograph [4], see also [25]) and its name
comes from the fact that the diffusion processes in the equations evolve in a time
scale determined instant by instant by the solution itself, so that, loosely speaking,
they can be regarded as the heat equation in their own intrinsic time configuration.
To overcome the difficulties of this approach, it was introduced a more geometrical
method named expansion of positivity. It was initially developed in the degenerate
case for the study of Harnack inequality (see [5]) and then used to give a more
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direct proof of regularity in [12]. In the singular case, the expansion of positivity
was proved in [6], and it was simply used in [7] to avoid the use of a very technical
Lemma that is central in the proof of [2]. The aim of this paper is to use the full
potentiality of the expansion of positivity Lemma in order to give a more direct
and geometrical proof of regularity of solutions to singular equations of the kind
of (0.1).

The method we present here can also be implemented for solutions to doubly
nonlinear equations of the kind (0.2). The expansion of positivity was proved in
[11] (see also [10] and [26]). Equations as (0.2) are the natural bridge between
the porous media equations and p-Laplace type ones. They constituted and still
constitute a hard challenge from the mathematical point of view, because many
questions (also of regularity) are still open. The term doubly nonlinear refers to
the fact that the diffusion part depends nonlinearly both on the gradient and the
solution itself. These equations have been introduced by J.L. Lions in [20] and
they describe several physical phenomena; see the survey of A.S. Kalashnikov [16]
for more details, see also the following papers for a non-comprehensive surveys on
this argument, [18], [19], [22] and [23]. In this paper we take as a starting point
the recent extensive study made in [26] and we also refer to it for a self-contained
introduction to the regularity theory for doubly nonlinear equations.

Let us sketch the strategy for the proof of Hölder continuity in the case of
doubly nonlinear equations; the p-Laplacean case is easier. Let us recall that we
follow the De Giorgi’s approach ([3]) where the Hölder continuity was proved via
the reduction of oscillation.

If u is the solution, for sake of simplicity, assume that the solution u satisfies
0 ≤ u ≤ 1. Let Q be a cylinder, and we state an alternative on the measure of
the set where the solution u is greater than 1

2 . Either the measure of this set is
greater than a sizeable portion of the cylinder itself or this measure is smaller. We
have two alternatives.

Assume that [u > 1
2 ] ∩ Q| ≤ ν|Q|, where ν is a suitable constant in (0, 1) to

be chosen. For ν small enough, it is possible to apply a De Giorgi’s result (the
so-called Critical Mass Lemma) to get that in a smaller cylinder the solution is
smaller than 3

4 , and this implies the reduction of oscillation.
If the other alternative happens, i.e. [u > 1

2 ] ∩ Q| > ν|Q|, we have that the
measure of the set where u is “big” is itself big. Then there is a time level t̄ where
in the ball B we have |u(·, t̄) > 1

2 ] ∩ B| > ν|B|. Let us apply an integral Harnack
estimate introduced for the first time for the p-Laplacean in [1] (see also [8]) and
for the doubly nonlinear case in [10] (see also [26]). Thanks to this inequality, the
measure information can be extended to any time level in Q. Hence we are under
the assumptions where we can apply the expansion of positivity Lemma, and so
we are able to find a subcylinder Q′ ⊂ Q where the solution is greater than a
small constant. In this way, we have a reduction of the oscillation of u and thus
the Hölder continuity of the solution is proved.

The present paper is organised as follows. In §2 we introduce notations and
main results for both classes of equations. In §3 we prove Hölder continuity for
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local weak solutions to equations of the kind of (0.1), and finally we devote §4 to
the proof of Hölder continuity for local weak solutions to doubly singular equations
as (0.2).

2. Notation and Main Results

2.1. The case of p-Laplacean equations

Let Ω be an open set in RN and for T > 0 let ΩT denote the cylindrical domain
Ω × (0, T ], of parabolic boundary Γ. We denote by |E| the Lebesgue measure of
the set E ⊂ RN and for a k ∈ R by [u > k] ∩ E the set of points of E in which
the inequality u > k holds. We write ∇u for the gradient of u taken with respect
to the spatial variables, and with ∇ · v the spatial divergence of a vector field v.
Consider quasi-linear, parabolic differential equations of the form

ut −∇ ·
(
A(x, t, u,∇u)

)
= 0 in D′(ΩT ), for 1 < p < 2, (2.1)

where for C0, C1 > 0, {
A(x, t, u,∇u) · ∇u ≥ C0|∇u|p,

|A(x, t, u,∇u)| ≤ C1|∇u|p−1.
(2.2)

A measurable function u is a local weak solution of (2.1) in ΩT if

u ∈ Cloc(0, T ;L2
loc(Ω)) ∩ Lploc(0, T ;W 1,p

loc (Ω)), (2.3)

and for every compact subset K ⊂⊂ Ω and for every sub-interval [t1, t2] ⊂ (0, T ]∫
K

uϕdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
K

{−uϕt + |∇u|p−2∇u · ∇ϕ} dxdτ = 0, (2.4)

for all locally bounded testing functions

ϕ ∈W 1,2
loc (0, T ;L2

loc(K)) ∩ Lploc(0, T ;W 1,p
o (K)). (2.5)

For ρ > 0 let Bρ be the ball of center the origin in RN and radius ρ. For
y ∈ RN let Bρ(y) be the translated ball centered at y. Let wN be the measure of
the N -dimensional unitary ball. Finally for ρ, l > 0 denote by Q(l, ρ) = Bρ×(−l, 0]
the standard cylinder.

Proposition 2.1 (p-Laplacean Expansion of Positivity [6]). Let u be a non-
negative, local, weak solution to (2.1), satisfying

|[u(·, t) > M ] ∩Bρ(y)| > α|Bρ| (2.6)

for all times
s− εM2−pρp ≤ t ≤ s, (2.7)
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for some M > 0, and α, ε ∈ (0, 1), and assume that for a fixed number m ∈ N it
holds

B8mρ(y)× [s− εM2−pρp, s] ⊂ ΩT . (2.8)

Then there exist σ ∈ (0, 1) and ε∗ ∈ (0, 1
2ε] ,which can be determined a priori,

quantitatively only in terms of the data, and the numbers α, ε,m, and independent
of M , such that

u(x, t) ≥ σM, for all x ∈ Bmρ(y), (2.9)

for all times

s− ε∗M2−pρp < t ≤ s. (2.10)

In addition, for the proof of Hölder continuity, we will need the following estimate
from [4, Prop.4.1 pg 193]. The Proposition can be regarded as a weak integral
form of a Harnack estimate. That is, the L1-norm of u(·, t) over a ball controls the
L1-norm of u(·, τ) over a smaller ball, for any previous or later time in a suitable
interval.

Proposition 2.2 (Integral Harnack inequality [4]). Let u be a non-negative weak
solution of (2.1) and let 1 < p < 2. There exists a constant γ = γ(N, p) such that

∀(x0, t0) ∈ ΩT , ∀ρ > 0, such that B4ρ(x0) ⊂ Ω, ∀t > t0

sup
t0≤τ≤t

∫
Bρ(x0)

u(x, τ)dx ≤ γ inf
t0≤τ≤t

∫
B2ρ(x0)

u(x, τ)dx+ γ

(
t− t0

ρN(p−2)+p

) 1
2−p

.

(2.11)

Remark 2.3. The proof shows that the constant γ(N, p) deteriorates as p→ 2.

Finally we state the main theorem as our result.

Theorem 2.4. Let u be a bounded local weak solution of (2.1). Then u is locally
Hölder continuous in ΩT , and there exist constants γ > 1 and α ∈ (0, 1) depending
only upon the data, such that ∀K ⊂ ΩT compact set,

|u(x1, t1)− u(x2, t2)| ≤ γ||u||∞,ΩT
( ||u|| 2−pp∞,ΩT |x1 − x2|+ |t1 − t2|

1
p

p− dist(K; Γ)

)α
, (2.12)

where p − dist denotes the intrinsic parabolic distance from K to the parabolic
boundary of ΩT , i.e.

p− dist(K; Γ) := inf
(x,t)∈K, (y,s)∈Γ

(
||u||

2−p
p

∞,ΩT |x− y|+ |t− s|
1
p

)
. (2.13)

The Theorem 2.4 will be proved if reduction of oscillation can be achieved. For
sake of completeness we give the explanation to this fact by next Proposition which
can be found in [4, pages 80-81].
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Proposition 2.5. Suppose that there exist constants a, ε∗ ∈ (0, 1) and b,Z > 1
that can be determined only in terms of the data, satisfying the following. Con-
struct the sequences

ρn = b−nρ, ρ0 = ρ ∀n = 0, 1, 2, ..

ωn+1 = max{aω,Zρε
∗

n }, ω0 = ω, ∀n = 0, 1, 2, . . .

and the cylinders

Qn = Q(ρpn, cnρn), with cn = ω
p−2
p

n , ∀n = 0, 1, 2, . . .

such that, for all n = 0, 1, 2, . . . it holds

Qn+1 ⊂ Qn, and ess osc
Qn

u ≤ ωn.

Then there exist constants γ > 1 and α ∈ (0, 1) that can be determined a priori
only in terms of the data, such that for all cylinders

0 < r ≤ ρ, Q(rp, c0r), c0 = ω
p−2
p ,

holds

ess osc
Q(rp,cor)

u ≤ γ(ω + ρε
∗
)

(
r

ρ

)α
.

Hölder continuity over compact subsets of ΩT is therefore implied by this estimate
by a standard covering argument.

2.2. The doubly nonlinear case

Let us consider the weak solutions to doubly nonlinear equations whose model
case is

ut −∇ · (um−1|∇u|p−2∇u) = 0 in ΩT := Ω× (0, T ), (2.14)

where Ω is an open bounded subset of RN and

p ∈ (1, 2), m > 1, and 2 < m+ p < 3. (2.15)

We recall that when m+p > 3 we are in the degenerate case, while when m+p = 3
the equation behaves like the heat equation and is called Trudinger’s equation,
named in this way because introduced by Trudinger in [24]. When 2 < m+ p < 3
we are in the singular case. The case m + p = 2 was considered in [9], where the
doubly nonlinear equation has a logarithmic behavior.

We will prove the Hölder continuity of solutions for the so-called supercritical
range, where we have a consolidated theory developed, i.e.

3− p

N
< m+ p < 3. (2.16)
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The classical theory (see for instance [26]) shows that the equation (2.14) can be
transformed into

ut −∇ · (β1−p|∇uβ |p−2∇uβ) = 0, β =
p+m− 2

p− 1
.

This transformation is useful in order to avoid proofs involving the weak gradient
of u, which has been shown in [15] to be existing. The technique that we are
applying works perfectly for more general equations of this kind, as

ut −∇ ·A(x, t, u,∇uβ) = 0, (2.17)

where A is a Caratheodory vector field satisfying the following conditions, for
C0, C1 > 0

A(x, t, s, ζ) · ζ ≥ C0|ζ|p,

|A(x, t, s, ζ)| ≤ C1|ζ|p−1.

A weak solution for the equation (2.17) is a non negative function u : ΩT → R,
uβ ∈ Lp(0, T ;W 1,p(Ω)), u ∈ Lβ+1(ΩT ), such that∫ ∫

ΩT

[A(x, t, u,∇uβ) · ∇φ− uφt] dxdt = 0, ∀φ ∈ C∞o (ΩT ). (2.18)

The proof in this case is different from the p-Laplacean one, because (1−u) is not
anymore a solution to the previous equation. Next we give the geometrical setting
we use to state the main Lemmata. Let 0 < M <∞ and

θ = (2M)3−m−p. (2.19)

Pick (x̄, t̄) ∈ ΩT and suppose that for θ as above, and a sufficiently small 0 < ρ < 1
the cylinder Q−ρ (θ) = (x̄, t̄) +Bρ× (−θρp, 0] is contained in ΩT . The following is a
doubly nonlinear version of the Critical Mass Lemma, which is a slight modification
of [26].

Lemma 2.6 (Critical Mass Lemma [26]). Suppose that u is a weak solution to the
equation (2.17), and suppose that there exists M > 0 and θ defined as above such
that the cylinder Q−ρ (θ) ⊂ ΩT , and it is satisfied

sup
Qρ(θ)

u ≤ 2M. (2.20)

Then there exists a constant ν ∈ (0, 1) depending only on the data such that if

|[u > M ] ∩Q−ρ (θ)| ≤ ν

(θMm+p−3)
|Qρ(θ)−|, (2.21)

then we have

u ≤ β

√
3

2
M in Q−ρ

2
(θ).
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Next we state a Lemma of expansion of positivity.

Lemma 2.7 (Expansion of Positivity [26]). Suppose that (xo, s) ∈ ΩT and u is a
weak solution of (2.17), satisfying for M > 0, α ∈ (0, 1)

|Bρ(xo) ∩ [u(·, s) ≥M ]| ≥ α|Bρ(xo)|. (2.22)

Then there exist ε, δ, η ∈ (0, 1) depending only on the data such that if

B16ρ(xo)× (s, s+ δM3−m−pρp) ⊂ ΩT ,

then

u ≥ ηM in B2ρ(xo)× (s+ (1− ε)δM3−m−pρp, s+ δM3−m−pρp).

Finally we recall the following L1-Harnack inequality which was first demonstrated
in [10].

Lemma 2.8 (Integral Harnack Inequality [26]). Let u be a weak solution of equa-
tion (2.17). Then there exists γ > 0 depending only upon the data such that for
all chosen cylinder B2ρ(y)× [s, T ] ⊂⊂ ΩT

sup
s≤τ≤T

∫
Bρ(y)

u(x, τ)dx ≤ γ
{

inf
s≤τ≤T

∫
B2ρ

u(x, τ)dx+

[
(T − s)
ρp

] 1
3−m−p

ρN
}
. (2.23)

Through the previous results, we are able to prove the following theorem.

Theorem 2.9. Let u be a local weak solution of the equation (2.17) and let m, p
be in the supercritical range (2.16). Then u is locally Hölder continuous in ΩT ,
i.e. there exist a Hölder exponent α ∈ (0, 1) depending only on m,N, p, C0, C1,
and a constant γ > 1, such that ∀K ⊂ ΩT compact set,

|u(x1, t1)− u(x2, t2)| ≤ γ||u||∞,ΩT
( ||u|| 3−m−p

p

∞,Ωt |x1 − x2|+ |t1 − t2|
1
p

(m, p)− dist(K; Γ)

)α
, (2.24)

where (m, p)−dist denotes the intrinsic parabolic weighted distance from K to the
parabolic boundary ΩT , i.e.

(m, p)− dist(K; Γ) := inf
(x,t)∈K, (y,s)∈Γ

(
||u||

3−m−p
p

∞,ΩT |x− y|+ |t− s|
1
p

)
. (2.25)

Remark 2.10. We recall that if u is a local weak solution of the equation (2.17)
with p and m in the supercritical range (2.16), then u is a locally bounded function,
as shown in [11] and in [26].
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3. Short proof of Theorem 2.4

3.0.1. The geometric setting

Fix (x0, y0) ∈ ΩT and construct the cylinder

[(x0, y0) +Q(2ρp, 2ρ
p
2 )] ⊂ ΩT . (3.1)

After a translation we may assume that (x0, y0) = (0, 0). Let us set

µ+ = sup
Q(ρp,ρ

p
2 )

u, µ− = inf
Q(ρp,ρ

p
2 )

u, ω = µ+ − µ− .

Consider the cylinder

Q(ρp, c0ρ), where c0 := ω
p−2
p . (3.2)

To start the iteration, we assume that

ω
p−2
p < ρ

p−2
2 , (3.3)

otherwise if this is not the case, we would have

ω ≤ ρ
p
2 .

Thus we have

Q(ρp, c0ρ) ⊂ Q(ρp, ρ
p
2 ) and ess osc

Q(ρp,c0ρ)
u ≤ ω.

Cylinders of the type of (3.2) have the space variables stretched by a factor ω,
which is intrinsically determined by the solution. If p = 2 these are the standard
parabolic cylinders.

3.0.2. Transforming the variables and the PDE

Introduce the change of variables

z =
x

coρ
, τ =

t

ρp
, v(z, τ) =

u(x, t)− µ−

ω
, (3.4)

which maps

Q(ρp, c0ρ) → B1 × (−1, 0). (3.5)

The transformed function v solves an equation similar to (2.1).
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3.0.3. Estimating positivity and conclusion

Now we deal with the following two alternatives: either

|[v(z, 0) >
1

2
] ∩B1/2| >

1

2
|B1/2|, (3.6)

or we would have

|[v(z, 0) >
1

2
] ∩B1/2| ≤

1

2
|B1/2|, (3.7)

and as the function (1 − v) still satisfies equation (2.1) with similar structure
conditions, we can assume that (3.6) holds. Thus we suppose (3.6) and by Propo-
sition 2.2 we have for to < 0

1

2N+2
|B1| =

1

4
|B 1

2
| ≤ sup

t0≤τ≤0

(∫
[v> 1

2 ]∩B1/2

v(z, τ)dz +

∫
[v≤1/2]∩B1/2

v(z, τ)dz

)

≤ γ
{

inf
t0≤τ≤0

∫
B1

v(z, τ)dz +

(
|to|

(1/2)N(p−2)+p

) 1
2−p
}
.

If we take

|t0|
1

2−p ≤ 1

γ2N+3
2(N− p

2−p )|B1| =
1

γ23+ p
2−p
|B1|, (3.8)

which can be done by defining

t0 = −
(

1

γ23+ p
2−p

)2−p

, (3.9)

we obtain the information

inf
t0≤τ≤0

∫
B1

u(x, τ) dx ≥ 1

γ2N+3
|B1| =

2
p

2−p

2N
|t0|

1
2−p |B1| = 4η |B1|, (3.10)

where we have defined

η =
2

p
2−p

2N+2
|t0|

1
2−p .

This implies that

|[u > η] ∩B1| > η |B1|, for all τ ∈ (t0, 0]. (3.11)

We apply Proposition 2.1 with

s = 0, M = η, ε =
t0
η2−p =

2p

2
N+2
2−p

, B16 × (t0, 0] ⊂ Dv,

Dv being the domain of v function, to get that there exist a σ ∈ (0, 1) and ε∗ ∈
(0, ε2 ] such that
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v(z, τ) ≥ ση, for all z ∈ B2, (3.12)

for all times

− ε1t0 = −ε∗ 2p

2
N+2
2−p

t0 ≤ τ ≤ 0. (3.13)

Returning back to the original coordinates this means that

u(x, t) ≥ µ− + ση ω, ∀x ∈ Bcoρ, σ, η ∈ (0, 1), (3.14)

for all times

− ε1 t0ρp ≤ t ≤ 0. (3.15)

This implies

ess osc
Q(( ρ

2l
)p,c0ρ)

u ≤ (1− ση)ω. (3.16)

for l =
1

p
log2

(
1

ε1t0

)
given by the request 2−lp = ε1t0. We are in the hypothesis

of Proposition 2.5, as the process can now be repeated inductively starting from
such relation.

4. Short proof of Theorem 2.9

4.1. Geometrical setting and the alternative

Define

S = sup
ΩT

u,

and begin by normalizing the function by the transformation

v(x, t) =
u(x, t)

S
, 0 ≤ v ≤ 1. (4.1)

Let 0 < ε0 < 1 be a number to be defined later in (4.9), and consider the following
cases: if

inf
ΩT

v ≥ ε0, (4.2)

then the equation (2.14) behaves as a variable coefficients p-Laplacean type equa-
tion, and by arguments of previous §3 we have the reduction of oscillation. If
otherwise

inf
ΩT

v < ε0, (4.3)

we may suppose the worst case, which is

inf
ΩT

v = 0.
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Finally we set the alternative on the measure of the positivity set of v. We set
M = 1

2 , and consequently θ = 1. Let us suppose that for a sufficiently small ρ to
be fixed later, that

Qρ(θ) ⊂ Q1 = B1 × (−1, 0] ⊂ B4 × (−4p, 0] ⊂ ΩT .

If ν ∈ (0, 1) is the number of Lemma 2.6, we can set two alternatives: either

|[v(x, t) ≥ 1

2
] ∩Qρ(θ)| ≥ ν|Qρ(θ)| (4.4)

or

|[v(x, t) >
1

2
] ∩Qρ(θ)| < ν|Qρ(θ)|. (4.5)

4.2. Conclusion of the proof of the Theorem 2.9

Assume (4.4) holds, then we have that it exists a t̄ ∈ (−ρp, 0] such that

|[v(x, t̄) >
1

2
] ∩B1| ≥ |[v(x, t̄) >

1

2
] ∩Bρ| > νρN |B1| = νwNρ

N . (4.6)

By the L1-Harnack inequality applied in the box B1 and by estimating T ≤ ρ2p

we have that

νwN
2

ρN ≤
∫
B1

v(x, t̄)dx ≤ sup
−ρp≤τ≤0

∫
B2

v(x, τ)dx

≤ γ
{

inf
−ρp≤τ≤0

∫
B2

v(x, τ)dx+ (ρp)
1

3−m−p

}
.

So, by asking the condition of supercritical range m+ p > 3− p
N we have

γ(ρp)
1

3−m−p ≤ νwNρ
N

4
, if ρ ≤

(
νwN
4γ

) 3−m−p
p−N(3−m−p)

=: ρ0,

and consequently

inf
−ρp0≤τ≤0

∫
B2

v(x, τ)dx ≥ νwN
4γ

ρN0 =

(
νwN
4γ

) p
p−N(3−m−p)

=: η1|B2| . (4.7)

This implies

|[v(x, t) >
η1

2
] ∩B2| >

η1

4
|B2|, for all t ∈ (−ρp0, 0].

Finally we use expansion of positivity Lemma to get

v(x, t) ≥ ηη1 = η

(
νwN
4γ

) p
p−N(3−m−p)

=: η∗, in B4 × (−ρp0, 0]. (4.8)
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Now we can choose

ε0 =
η∗

2
, (4.9)

where ε0 is the constant defined in (4.2).
If otherwise (4.5) holds, we use Lemma 2.6 for which we take

M =
1

2
, θ = (2M)3−m−p, c0 = 1,

we fulfill its hypothesis to have

v(x, t) ≤ 1

2
β

√
3

2
in Bρ0/2 ×

((
− ρ0

2

)p(
1

2

)3−m−p

, 0

]
= Q ρ0

2
(θ). (4.10)

Finally, if (4.3) holds, then by expansion of positivity we have demonstrated
that in the two alternatives (4.4) and (4.5) we obtain respectively

inf
Q ρ0

2

v ≥ 2ε0 or sup
Q ρ0

2

v ≤ 1

2
β

√
3

2

while, if (4.2) holds we have an equation of the p-Laplacean type and by the same
technique of previous section we still arrive to an estimate of the previous kind. In
either case, returning to the original function, we obtain a reduction of oscillation
and therefore the Hölder continuity in a similar fashion than we did in the previous
section (we refer for details to [26]).
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[2] Chen, Y.Z., DiBenedetto, E.: Hölder Estimates of Solutions of Singular Parabolic Equa-
tions with Measurable Coefficients. Arch. Rational Mech. Anal., (3) 118, 257-271 (1992)
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