We consider quite general fully nonlinear mixed Cauchy-Dirichlet problems with a Caputo derivative D-alpha with respect to the time variable and a in (0, 2). Under natural conditions, we show the existence of a local solution u such that D(alpha)u and the second order space derivatives D-xi,D-x j u belong to the class C-alpha theta/2,C-theta ([0, T] x (Omega) over bar), for some T positive, with theta is an element of(0, 1). Moreover, we show the uniqueness of global solutions in the same class of functions.
Guidetti D. (2023). On the Cauchy-Dirichlet problem for fully nonlinear equations with fractional time derivative. REVISTA MATEMATICA COMPLUTENSE, 36(1), 141-162 [10.1007/s13163-021-00415-w].
On the Cauchy-Dirichlet problem for fully nonlinear equations with fractional time derivative
Guidetti D.
2023
Abstract
We consider quite general fully nonlinear mixed Cauchy-Dirichlet problems with a Caputo derivative D-alpha with respect to the time variable and a in (0, 2). Under natural conditions, we show the existence of a local solution u such that D(alpha)u and the second order space derivatives D-xi,D-x j u belong to the class C-alpha theta/2,C-theta ([0, T] x (Omega) over bar), for some T positive, with theta is an element of(0, 1). Moreover, we show the uniqueness of global solutions in the same class of functions.File | Dimensione | Formato | |
---|---|---|---|
Binder1.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
505.38 kB
Formato
Adobe PDF
|
505.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.