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Abstract
We consider quite general fully nonlinear mixed Cauchy-Dirichlet problems with a Caputo deriva-
tive D% with respect to the time variable and « in (0,2). Under natural conditions, we show the
existence of a local solution u such that D*u and the second order space derivatives Dy,,;u belong

to the class C%"")([o, T] x Q), for some T positive, with 6 € (0,1). Moreover, we show the uniqueness
of global solutions in the same class of functions.

1 Introduction

The aim of this paper is the study of fully nonlinear Cauchy-Dirichlet systems in the form
D(yu(t’x) = F(ta z, (Dgu(ta x))\p\§2)7 te [05 T]a T e Qy
u(t,z') = g(t,z’), (t,2') €[0,T] x 09, (1.1)

DFu(0,7) = ug(z), =€ Q,keNg,k<a,

Here F is a real valued function with domain [0, Tp] x € x RN with Ty € R, € is an open bounded
subset of R™ with appropriately regular boundary 992, N(n) = n? +n+ 1. The main feature of F' is that,
if we indicate with (¢,z,p) = (¢, 2, (py)|p<2) (p € Ni) the generic element of [0, Tp] x Q x RN

> Dy, F(t,p)&” > vtz p)l¢[* VEeR"
lp|=2

with v continuous and positive (for precise assumptions see Section 3). D¢ indicates the Caputo time
derivative of order o« € R, which is described in Definition 1.1.

Some variations of this situation are briefly discussed in Remarks 3.4 and 3.5.

Problems with fractional time derivatives arise as mathematical models of complex systems which
exhibit anomalous diffusion, appearing, for example, in strongly porous materials and percolation clusters.
A clear discussion of anomalous diffusion taking to fractional order derivatives is given, for example, in
[8]. See also [10] for further applications and motivations.

Before illustrating more in detail the content of the present paper, we cite some literature dealing
with nonlinear problems with fractional time derivatives.

*The author is member of GNAMPA of Istituto Nazionale di Alta Matematica



A general problem in the form (1.1) is studied in [9], looking for viscosity solutions in the case
a € (0,1), both with Dirichlet and Neumann boundary conditions. The assumptions on F, which is
assumed to be merely continuous, allow a degenerate ellipticity. Assuming that a subsolution and a
supersolution exist, a theorem of existence and uniqueness of a solution is proved. Such solution is (a
priori) just continuous.

Abstract quasilinear evolution equations in the form

D*u(t) + A(u)u = f(u) + h(t),
(1.2)
u(0) =z

are discussed in [3]. The authors work in continuous interpolation spaces allowing a singularity in ¢ = 0,
but such that, for « in the class of solutions, u(0) is defined. Operators A(u) are supposed to be positive
(in the sense that their resolvent set contains (—oo,0], which maximal decrease of (A — A(u))~!) and
results of maximal regularity are proved for corresponding linear problems. These results are employed
to prove the existence of local solutions of systems in the form (1.2) and are applied to quasilinear
Cauchy-Dirichlet problems in the form

D*u(t) — (o(uz))e = h(t,z), =€ (0,1), t>0
u(0,z) = up(z), =z € (0,1), (1.3)
u(t,0) = u(t,1) =0
in case h(-,0) = h(-,1) = 0. Their abstract linear theory is applicable because the operator
A(u) = o’ (ug) D?

is positive in the class of Holder continuous functions vanishing in {0,1}. Unfortunately, this does not
happen in the larger class of Holder continuous functions. So, if, for example, h(-,0) or h(-,1) do not
vanish identically, the application of their abstract theory becomes problematic.

Zacher studies in [11] the quasilinear Cauchy-Dirichlet problem

D%y = Z?:l Z?:l DI7 (QZJ(U)D%U) = fv te [OvT]vx € Qv
u(t,z') = g(t,z’), (t,2') €[0,T] x 9Q,

uw(0,7) = up(z), x€QkecNyk<a,

with @ € (0,1), in an L? setting. Notably, he proves a result of uniqueness and global existence of a
solution.

A result of global existence for a problem similar to (1.3), with the Riemann-Liouville D{* replacing
D* is proved in [2], under the condition 0 < og < 0'(y) < 01 < oo, and 2 sufficiently small. The
same thesis [2] contains a result of maximal regularity for the abstract equation (with a suitable initial
condition)

Dfu(t) + Au(t) 3 f(2),

with A m—accretive in the Hilbert space H.

The majority of papers dedicated to nonlinear evolution equations with fractional time derivative
concerns semilinear systems. For them, we refer to the preprint [4], which contains a large bibliography.
We mention also [1], where the authors study a problem in the form

Du(t) = Au(t) + f(t, (b))t >0, >0,
U(O) = Uo,

with A linear sectorial operator in the Banach space X. They prove the existence and uniqueness of
a maximal local mild solution. It is considered the case that, for some interval [yg,71], f is Lipschitz



continuous in the variable u from X'T¢ = D(A™€) to X7(9) with y(e) > pe, p > 1. If X is ordered, for
different functions f, called fi; and fo, with f; < fo, a comparison between the corresponding solutions
u; is proved.

The aim of this paper is to show a result of local existence and global uniqueness of a solution to (1.1),
extending the classical linear C1+5.2+0 theory in case @ = 1 to the case a € (0,2) and fully nonlinear
problems. In the linear case with @ = 1 necessary and sufficient conditions on f, g,ug, g are known in
order that there exists a unique solution u in the class C'+%2¢ (see [7], Theorem 5.1.16). The fully
nonlinear case was studied in [7], chapter 8.5.3, with first order boundary conditions, by the method of
linearization. This method can be easily adapted to the case of Dirichlet boundary conditions.

Concerning the case a # 1, the problem has to be slightly reformulated; the belonging of u to
C1+5:216(]0, T] x Q) is equivalent to the belonging of D;u and Dy, ju to C20([0,T) x Q) (1<i,j<n,
the space dimension of 1), but its natural generalization for o € (0,2) that the belonging of u to
Cot 9 210([0,T] x Q) is equivalent to the belonging of D*u and Dyyzju to CO([0,T] x Q) is false
(see Remark 2.3) and, in fact, no regularity in time better than C'® can be, in general, expected. So
we shall look for a solution u such that D*u and D, ., u belong to C%0([0,T] x Q). It turns out that

these conditions imply that u € C% ([0, T]; C2(€)) N B([0, T]; C2+¢(Q)) (B stands for "bounded”, see
the following for the notation). So we shall employ the linearization method, looking for a fixed point to
which the contraction mapping theorem can be applied not in the class C“+a7972+9([0, T] x Q), but in the
larger class C'¥ ([0, T]; C2(Q)) N B([0, T); C2+9(Q)). Such fixed point u has D*u in C%¢([0,T] x Q) and
so our result is a generalization of the result described in the case @ = 1. The main tool of this project
is Theorem 2.1, which is an extension to the case a € (0,2) of the classical maximal regularity result
prescribing necessary and sufficient conditions for solutions in the class C 1+%,2+9([0, T] x Q) in the linear
case, with a = 1.

The content of the paper is the following: in this Section 1 we introduce some notations and basic
results which we shall employ.

Section 2 contains the linear theory. We begin by stating the crucial Theorem 2.1 and Proposition 2.2,
and extend them, with Theorem 2.8, to the nonautonomous case. In Section 3, we consider the nonlinear
problem (1.1), showing a result of existence of a local solution (Theorem 3.2) and a result of uniqueness
of a global solution (Theorem 3.3), with possible extensions to more general domains of F' (Remark 3.4)
and to certain quasilinear problems (Remark 3.5).

Now we introduce some notations which we are going to use in the paper.

C will indicate a positive real constant we are not interested to precise (the meaning of which may be
different from time to time). In a sequence of inequalities, we shall write Cy, Cy,Ca,.... If C depends
on «a, we shall write C(a) or Cy(a), Cy (), Ca(a),.... Analogously, if § is a parameter depending on
a, B, ..., we shall write 6(c, 3,...).

If @ € R, [a] will indicate the maximum integer less or equal than a. RT will indicate the set of
(strictly) positive real numbers.

If f is a function defined in the cartesian product [0,7] x A, we shall not distinguish between f and
the function t — f(¢, ), which has domain [0, 7] and may be with values in some space of functions with
domain A.

If X is a complex Banach space with norm |||, B([0, T]; X) will indicate the class of bounded functions
with values in X with domain [0,T7]; if A is a (generally unbounded) linear operator from D(A) C X to
X, p(A) will indicate the resolvent set of A. If A is a closed operator in X, A: D(4)(C X) — X, D(A),
equipped with the norm

lellpay = llel + 1Az

is a Banach space.

If X and Y are Banach spaces, we shall indicare with £(X,Y") the Banach space of linear, bounded
operators from X to Y, equipped with its natural norm. In case X =Y, we shall simply write £(X).

Given a function f with domain Q, with Q subset of R"™, vf will indicate the trace of f on the
boundary 0 of €.

If 8 € Ny and © is an open, bounded subset of R”, we shall indicate with C?(Q) the class of complex
valued functions which are continuous in Q, together with their derivatives (extensible by continuity to

Q) of order not exceeding 8. If B € RT \ N, C#(Q) will indicate the class of functions in C11(€) whose



derivatives of order [3] are Holder continuous of order B — [3] in 2. We shall equip C#(2) with the norm

|D?f(x) — D*f(y)|
&y := max{ max ||D? oy, Max  sup . 14
”f”CB(Q) {HP|§[3] ” fHC(Q Ip|=15] o yelaty |.%‘ _ ylg_[/g] } ( )

These definitions admit natural extensions to function with values in a Banach space X. In this case, we
shall use the notation C#(Q; X) (in particular C?([a, b]; X) in case Q = (a,b) C R). All these classes will
be assumed to be equipped with natural norms, obtained from (1.4) replacing the absolute value with
the norm in X.

By local charts, if 92 is sufficiently regular, we can consider also the spaces C%(99; X).

If a, 8 € [0,00), T € RT and Q is an open bounded subset of R", we set

C*P([0,T] x ©) := C*([0, T); C(@) N B([0, T); C¥(2)).
This space will be equipped with the norm

1l e o, 1yx0) = max{|| fll ce o, 13,0 @) 1/ Bto,my:00 @) -

An analogous meaning will have C*#([0,T] x 99). If X is a Banach space, Lip([0,T]; X) will indicate
the class of Lipschitz continuous functions from [0, T], equipped with the natural norm

LF () = f(s)
£l zipo1x) := max{[|fllcqo,rix),  sup — }-
s,t€[0,T],s#t |LL S|

We pass to define the Caputo time derivative of order o € RT. Such derivative can be introduced in
different ways (see, for example, [10] 2.4). We adopt the following definition: if f € C([0,T]; X) (with X
Banach space), we introduce the operator J,, defined as

Juf(t) = —— / (t— )2 f(s)ds

It turns out that J, is injective and, if o > m, with m € Ny, Jof € C™([0,T]; X), and (J,,,f)™ = f .
This justifies the following

Definition 1.1. Let « € R*, m = [a] (the integer part of o), w € C™([0,T]; X), with T € R™ and
X Banach space. We write that the Caputo derivative D%u is defined (in [0,T]) if there exists f €
C([0,T); X) such that

o
u(t)— Y =u(0) = Juf(t) Vte[o,T).
JENy,j<a J:
In this case we define

D% := f.

Of course, in case a € N, D*u is defined if and only if u € C*([0,T]; X) and D*u coincides with the
classical derivative D*u. It is also easily seen that, if 0 < T < T; and D%u is defined in [0,77], it is
defined also in [0, 7] and the derivative in [0, 7] is the restriction of the derivative in [0, 7]

We shall employ also the following

Proposition 1.2. Let Q be an open, bounded subset in R™, locally lying on one side of its boundary
o), which is a submanifold of R™ of dimension n — 1 and class C", with r > 1. Let 0 < o < By < 7.
Then, ¥¢ € (0,1) CU=9Po+EB1(Q) € Je(CP(Q), CP1(Q)), that is, there exists C positive such that, if
fech(9Q),

”fHC(l £)Bo+EB1 (Q < CHfHC[fO Q)Hf”C/ﬁ (Q
the same holds if we replace Q with 0.

Proof. See [5], Proposition 1.1.



Proposition 1.3. Let Q fulfill the conditions of Propositin 1.2. Then there exists an element R of

We shall employ also the following result of extension:

L(C(092),C(Q)) such that v(Rg) = g Vg € C(92). Moreover, V¢ € [0,7] the restriction of R to C*(99)
belongs to L(C$(09),C4(Q)).

For a proof, see [6], Lemma 2.1(IV).

2 Linear equations

We begin by considering the linear problem
D*u(t,x) = Az, Dy)u(t,z) + f(t,z), t€[0,T],z € Q,
u(t,z') = g(t,2’), (t,2)€[0,T] x9N, (2.1)
DFu(0,2) = up(x), =€ QkeNg k< a.

(A1) Q is an open, bounded subset in R™ lying on one side of its boundary 02, which is a n —
1—submanifold of R™ of class C**%, with 6 € (0,2) \ {1}.

(A2) a € (0,2), A(z,Dz) = 32, /<2ap(x)DE, with a, € C?(), a, complex valued; A(x,D,) is
assumed to be elliptic, in the sense that 3, ay(x)§” # 0 V€ € R™ \ {0}; moreover,

|Arg(§:<%(xka)|<(l——%)w, Vz € Q,v¢ € R™\ {0}.

lp|=2

(A3) af < 2,0 # 2 —
The following result is proved in [6], Theorem 1.2:

Theorem 2.1. Suppose that (A1)-(A3) hold. Then the following conditions are necessary and sufficient
in order that (2.1) has a unique solution u in C([0,T]; C*(Q)) N B([0,T]; C?9(Q2)), with D*u, A(-, D, )u
belonging to C20([0,T] x Q):

(1) f € CF([0,T] x Q);

(II) if k € No, k < a, uy € COT20-2)(Q).

(III) g € C([0,T]; C2(09)) N B([0, T]; C*t(K)), D*g exists and belongs to C¥ ([0, T] x ON);

(IV) if k € No, k < a, yuy, = DFg(0);

(V) Y[A(, Da)ug + f(0)] = Dg(0).

The following regularity result will be employed:

Proposition 2.2. Suppose that (A1) holds and let u € C([0,T]; C%(Q)) N B([0,T]; C**9(Q2)), a € (0,2),
Doy € C([0,T); C(Q)) N B([0,T); C°(Q)). Then u € C%([0,T); C2(Q)). A similar result holds if Q is
replaced by 0N2.

Proof. See [6], Lemma 3.1.
O

Remark 2.3. As already observed, if the assumptions of Theorem 2.1 are satisfied and a = 1, the
solution u belongs to C1+2([0,T]; C(Q)), so that u € C1+2:2+0([0,T] x Q). If a # 1, in general u does
not belong to C*+% ([0, T]; C(2)). See for this Remark 4.2 in [6].

We shall need also some information concerning the dependence of the solution u of (2.1) on the data
and T. Moreover, we want to study a nonautonomous version of (2.1). So we begin with the following
proposition, concerning the dependence of some norms of the solution on 7.



Proposition 2.4. Consider problem (2.1), with the assumptions (A1)-(A3). Let Ty € RY. Then there
exists C(Tp) in RT such that, VT € (0,Tp), the solution u as in Theorem 2.1 satisfies the estimate

HDQUHC”‘TG,Q([mT]Xﬁ)) + lull goyczto @y + ”uHc%"([o,T];c%ﬁ))

< C(TO)(Hf”c%e,e([o’T]Xﬁ)) + Zk<a ||uk||ce+2(17§>(§) (2-2)

+||Dag||ca79’9([0,T]><8$2)) + 19l B0, 1150240 (902)) + ”g”c%e([o,T];cz(asz)))’

Proof. Let R be the operator described in Proposition 1.3. We set

vt x) = Rlg(t,)](x).

Then v € C% ([0, T]; C2(Q)) N B([0,T); C**(Q)), D*v is defined and belongs to C2([0,T] x ). In
fact, for example,

tk 1 ’ a—1lmna
ot = 3 0la0) = 15 | e=sm gt as

so that . .
1
ot = Y DE0) = o [ (6= 90 RO (s, )ds
k! I(«a) J,
k<a
and
D% = R(D%g).

So we have

HUHB([O,T];C“"@)) + ”U”c%e([o,T];cZ(ﬁ)) * ”D%”c%e*"([o,ﬂxﬁ)

23
)

< Colllgll B0, m3:02+¢ o02)) + llgl y T D%l e

% ([0,T]:C2(09 2 (0,7]x09)

with Cy independent of T'. We deduce

HA('7 DI)UHC%H([O,T]XQ) S Cl(||v||ca79([07T]702(ﬁ)) + ||’U||B([O7TLC2+9(§))

2

< 02(”9”0“79([0,T];02(89)) + 119l B, 17:¢2+2 (902)) )
with C5 independent of T'. By difference we have:

D*(u — v)(t,z) = A(x, Dy)(u — v)(t,z) + ¢(t,z), te€[0,T],z € Q,
(u—wv)(t,2") =0, (t,a")€]0,T]x 09,

DF(u —v)(0,2) = ug(x) — Ryup(x), =€ Q ke Ny, k< a,

with
o(t,x) = f(t,z) — (D%(t,x) — A(x, Dy)v(t, ).

We set
¢(t? ) if te [OvT]v

¢(tv ) =
o(T,-) if te [T, Tyl

Then ¢ € C%9([0, Ty] x €2)). We consider the problem

Dz (t, ) = A(x, Dp)z(t, z) + d(t,x), te0,Ty,z e Q,

2(t, ') =0, (t,2") €[0,T] x 99, (2.5)

DFz(0,7) = ug(z) — Ryup(z), =€ Q,keNg,k<a,



By Theorem 2.1, (2.5) has a unique solution z in C([0, Tp]; C%(Q))NB([0, Ty); C*+?(Q)) with Dz belonging
to C20([0, Ty) x €2). Moreover, as

19l 52 0 0 11y = 190820 (07130

D2l o 0.y T 12l B0z @) F 120 022 (o oy
< CoTo) (165 g0 gy + Lobe 10 = Bkl gosac- ) )
< LTI o oy + S k] st )

< CQ(TO)(”]C”CQTQ’Q([O,T]xﬁ)) + ||9||C%9([07T];02(BQ)) + 9l o, 11,0240 (892)) + ”Dag”C%e’e([O,To]xaQ))

+ Ek<a HukHCG#»2(17§)(§)).

29

So, from (2.3) and (2.6) we deduce
HDQUHCC‘TS"*([O,T]XQ)) ™ ”u”B([OT];C“"(ﬁ)) + ”u”c%e([o,T];cZ(ﬁ))

< D0l a2 0 o 190y T IV lB0 110200 @) + 100 38 0 17,020

+||DQZHCQTG’9([O,TO]><§)) + 12l B om0z to @) + HZHC%G([O)TO];CQ@)

< C(To)(llgllzo,ryc2+e @) + 9l g (0 19,02 00y) T P Il 520 (0 7100

+||f||0079'9([0,T]><ﬁ)) + Zk<a ||uk||ce+2(17§)(ﬁ))
on account of (2.3) and (2.4).

We examine the variation of the constant C'(Tp) in (2.2) as we modify A(x, D).

Lemma 2.5. Suppose that the conditions (A1)-(A3) are fulfilled. Let Ty € RY, 0 < T < Ty and
let f,ur (k < a),g satisfy the conditions (I1)-(1V) in the statement of Theorem 2.1. Let B(x,D,) =
2 ipl<2 bo(@) DL, with b, € C%Q) and

b, — a <6 b, — o) SR
max [[b, — aplle) <0, max b, — apllcem < R,

with 8, R positive. We consider the system
D*u(t,z) = B(x, Dy)u(t,x) + f(t,z), te€l0,7],z€Q,

u(ta xl) = g(tvx/)v (tvx/) € [OvT] X 897 (27)

DFu(0,z) = up(z), =€ QkeNgk<a,

with y[B(:, Dz)uo + f(0)] = D%g(0).
Then there exists 0y positive, depending on (a,),<2, R and Ty, such that, if § < 0o, (2.7) has a unique
solution u in C([0,T]; C2(9)) N B([0,T); C*t(Q2)), with D*u, B(-, Dy )u belonging to C¥-4([0,T] x Q);

moreover,
HDQUHC%S’Q([O,T]XQ)) Fllull po, 2o @) + ||“”c"7"([0,T];CZ(§))

< C(TO?R7 (ap)lp‘SQ)(H]F”C%&)‘S([O,T]xﬁ)) + Zk<a ||uk||ce+2(1—§)(§)



Proof. We write (2.7) in the form
DYu(t, z) = A(x, Dy)u(t,z) + [B(z, Dy) — A(x, Dy)u(t,z) + f(t,z), te€][0,7],x € Q,

u(t, ') = glt,a'), (ta') € [0,T) x 99,

DFu(0,7) = u(z), € Q,keNgk<a.

It is easily seen that, if § is sufficiently small, B(x, D, ) satisfies the condition (A2). So, by Theorem 2.1,
a solution w with the declared regularity exists. From (2.2) and Proposition 2.4

ID*ull a2 00 7y T N¥llBo,m1c2r0@) + 1l o2 (o o)
< 0(9’TO)(HfHCaTg‘e([O,T]Xﬁ)) + Zk<a HukHCSJrz(lfg)(ﬁ)

+Dgll ,ap o + lgllso.ric2+e 00)) + ll9ll o2

([0,T]x %)) [0 T1;C2(09))

B D2) = ACDo)lul st o g 1)

and, employing Proposition 1.2,

1B, D) = ACs Da)lull s o g oy

0
< Z\p\SQ(H% bollc Q)HD UHC 2 (j0,17:0(0)) + E[ ] ollap — bP”C'J'(ﬁ)”DpuHB([O,T];C"*j(ﬁ))
0
+ Z[ ]o llap — bp”cHef[e](ﬁ)||Dpu||B([07T};c[9]fj(ﬁ)))

6] J
< C(n, Q)(5||U||C<129(0T] :C2(90)) Z[ o= 9R0H“||B(0T ;CO=i+2(Q))

[9]J 1 0]J

+ 2[9]

HUHB(OT] .C2+10]— J)(Q)))

< C(n, Q)[wo (9, R)(HUHC % (j0,1);02()) + Hu||B([o7T];c2+e(ﬁ))) + RHUHB([QT];W(E))L

with gir% wp(R, ) = 0. Taking ¢ so small that C(0,Ty)C(n, Q)we(d, R) < =, we deduce
—

1
29
HDauHc%“([o,T]xﬁ)) +lull po.rycave @) + ||u”c%9([o,T];c2(§))

< 200, To) 1y 0 g gy + Sl s

+Dgll o o + 119l B(po,11:c2+2 (992)) + [l9

([0,7]x09)) % ([0,T):C2(09))

+C(n, Q) Rlull g0, 1,023))-
Now we fix ¢ in (0,60) \ {1}. Then, there exists C(0’,Ty) positive such that

(e}
”D u”CTe/’sl([O,T]

@) + lull po, ;0207 @y + lull % ([0,7):0%(@))

< OO, To)(

o8 oy T 2oksa [kl gzt g

+HID gHCTe/'@’([o,T]xan))

+IB(:, Dz) = A(+, D2)]

1911 B(t0,1:02+" (02) + 19l % ((0,11:07(59))

)

?(10.7]x2)




and

I[B(-, Ds) — A(-, D$)]“HC“§/ 010,71 90))

01

< Zm\gz(”% - bp”c(ﬁ)HDQUHCQTS'([O,T];C@)) + ijo lla, — bp”cj(ﬁ)||Dpu||B([o,T};ce’—j(§))

()
+ Zg‘io lla, — bp||cj+9’—[91(§)||DPUHB([0,T];(J[9]—J'(5)))
< C(n, Q)w‘gr((57 R>(||u”c°“T‘ﬂ([o,T];cz(ﬁ)) + H“||B([0,T];C2+9’(ﬁ)))v

with ;ir% wg: (R, 8) = 0. Taking § so small that C(0)we (R, 5) < 3, we deduce
—

lull oo, r. 02y < ull oo, 7102+ oy

S 20(9/7TO)(HfHCaTe,’G/([O,T}Xﬁ)) + Ek:<a HukHCS’-*Q(l—%)(ﬁ)

+HDQ9”CQT9/’9/([O7T] %)) + 91l (o, 1302+ (902)))

/
S 0(0 ’Q’TO)(”fHCQTB’O([O,T]Xﬁ)) + Zk<a ||uk‘|cs+2(1—§)(§)

HDgll a0 10 7yxag) T 191B0.T10240 20))

which completes the proof.

Corollary 2.6. Suppose that ) is as in (A1). Consider, for R,v, € positive the class of coefficients

C(R,v,€) = {(ap)pi<2 : ap € C¥(Q), lapll oy < Bl Do) 1m0 @0(2)E°] 2 VIE* Vo € Q€ € R,

[Arg(3) =2 ap(@)€%) < (1= )7 — €, Yz € Q,§ € R \ {0}}.

Given (ap)|p <2 in C(R,v,¢€), consider problem (2.1). Then, for any Ty positive, the constant C(Tp) in
the estimate (2.2) can be chosen independently of (a,)|p <2 and T' € (0,Tp].

Proof. Let Ty € RT. By Lemma 2.5, for any (a,)|,<2 € C(R, v, €) there exists §((a,)|p<2) positive such
that the conclusion holds for

{(bp)lp\§2 € C(R,v,¢): lglli)é ”bp - a/)”@‘(ﬁ) < 5((ap)\p\§2)}'

The conclusion follows from the fact that C(R, v, €) is compact in C (ﬁ)”2+"+1, by the theorem of Ascoli-

Arzela.
O

Now we consider the nonautonomous system

DYu(t,z) = A(t,z, Dy)u(t,z) + f(t,z), te€][0,T],z €,

u(t.a') = g(t.2'),  (1,2%) € [0,7] x 90, (28)
DFu(0,7) = ug(z), =€ Q,keNy,k<a,

with the following conditions:



(B1) 0 € RT\N, 0 < 0 < 2; Q is an open, bounded subset in R™ lying on one side of its boundary
09, which is a n — 1—submanifold of R™ of class C**?.

(B2) a € (0,2), At,z,Dy) = X2 <2 ap(t, )DL, with a, € CF([0,T) x Q)), complex valued;
vt €[0,T] A(t,z, Dy) is assumed to be elliptic, in the sense that 3= 5 a,(t,2) # 0 V€ € R™ \ {0}; we
suppose, moreover, that

A4rg( " ay(t,2)€%)] < (1 - %)w, Va € Q,V6 e R™\ {0}.

lp|=2

Lemma 2.7. Suppose that (B1)-(B2) and the conditions (I1)-(IV) of Theorem 2.1 hold; moreover,
[A(Oa aD )U’O + f(Ov )} = Dag(o)
)

Suppose also that, for some T € [0,T), (2.8) has a solution @ in [0,7], with D*a € C¥ ([0,7] x Q)),

a € C([0,7]; C*(2)) N B([0, 7}; C*°(Q)).
Then there exists 6 €]0,T]|, independent of T, such that (2.8) has a unique solution u in [0, min{7T +
8, TY] with D*u € CE0([0,7 4 6] x Q), u € C([0,7 + 6]; C2(Q)) N B([0, 7 + 6]; C2+°(Q)) and Ujjo,7] = G

Proof. Of course, if 7 = 0, no function w is given. In this case, we show only the existence and uniqueness
of a solution with the declared properties in [0, d].
Let 6 € (0,T — 7]. We consider the class

Xy :={U € CF (0,7 +3]); C*(Q) N B0, +8)); C***(Q)) : Ujpo ) = i}
In case 7 = 0, we simply set
Xos = {U € C¥([0,]); C*(2)) N B((0,6]); C***(Q)) : U(0) = up}.
X, s is a complete metric space with the distance

d(Uy, Uz) = max{[|Uy — Us|| ,ap (07-15]:02 (D)’ UL = Ul (o, r-48);02+0 @) }

= max{[|U1 = Uall yae (500 1UL = V2llprrisicnro @y -
An element of X s is, for example,

a(t,z) if te]0,7],
Ult,z) =
a(r,x) if telrnT+4d].

We recall that, by Proposition 2.4, if a solution with the declared properties exists, it belongs to X 5.
For each U in X, s we consider the system

Du(t, ) = A(r, 2, Dy)u(t,z) + [A(t,z, D) — A(T, 2, D)|U(t,2) + f(t,x), t€[0,(r+I)AT],x€Q,

u(t,z’) = g(t,x"), (t,2’) €]0,T] x 99,

DFu(0,2) = ug(x), =€ QkeNyk<a.
(2.9)
By Theorem 2.1, (2.9) has a unique solution v = S(U), with D®u € C¥-9([0,7 + 6] x Q), u € C([0,7 +
§]; C%(Q))NB([0, 7+6]; C?*+9(Q)). On account of the uniqueness of the solution in [0, 7] in the autonomous
case, we deduce that S(U)|j0,-] = @ and so S(U) € X; 5. Therefore, if U;,Us € X; 5 and v = S(Uy) —
S(Us),

DY(t,x) = A(7, 2, Dy)v(t,x) + [A(t,z, D,) — A(7, 2, D,)|(Uy — U)(t,2), t€0,(r+6)AT],z€Q,
v(t,z') =0, (t,2')€[0,T] x 090,

DEv(0,2) =0, x€QkeNyk<a.
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By Corollary 2.6, there exists C() positive, independent of 7, such that

A(S(U), S(V2)) < CONAL2, Do) = A, Do) = Vo)l g, g

Let R € R, with max|, < [|a,(t, ) < R. Then

”CHTB’Q([O,T]XQ) =
af
llap(t,-) — ap(T, ')”c(ﬁ) <Rlt—7|2.

If |p| < 2,we deduce, for 0 < o < 6,

a(9—o)

lap(t,) = ap(7, )o@y < Clo)|t =77 = R.
Arguing as in the proof of Lemma 2.5, we deduce
d(S(U1),5(U2)) < wi(R,0)d(Ur, Usz) + C1R|Ur = U2l (7. r+8):02@))

with girr(l) wi(R,6) = 0 and C; independent of 7. We have also, for o € [0, %],
—

ab
laollco (fr.rran0@) < B2 7

So, again arguing as in the proof of Lemma 2.5, taking ¢’ € (0,0) \ {1}, we deduce
1S(U1) = Sl (7 rra1,02@)) < 10U = Uzl pprrrop;c240 @)

S UJQ(R, 5)d(U1, UQ),

again with wo(R,d) independent of T and giné wa(R, ) = 0. We deduce that
—
d(S*(Uh), §%(U2))
< wi(R,6)d(S(Ur), S(Uz)) + C1R|[S(Ur) = SU2) |l ¢ (716702 @)

< OJ1(R, 5)(W1(R, 6)(1([]17 Ug) + ClRHUl — U2Hc([7_77_+6];cz(§)) + ClRWQ(R, (S)d(Uh Ug)

We conclude that, for some § positive independent of 7, S? is a contraction in X, s and the conclusion
follows.
O

From Lemma 2.7 we immediately deduce the following

Theorem 2.8. Suppose that (B1)-(B2) hold. Consider system (2.8). Then the following conditions
are necessary and sufficient in order that there exist a unique solution u such that D“u belongs to
C%0([0,T) x Q) and v € C% ([0, T); C2(Q)) N B([0, T); C2H0(Q)):

(I) f e CF9([0,T] x Q);

(II) if k € No, k < a, uy € COT20-2)(Q);

(III g € C[0,T]; C2(89)) N B([0, T); C2+(9Q)), D*g € CF4([0,T] x Q);

(IV) yuy, = Dfg(0) (k < ov);

(V) ’7[‘4(07 ] DI)UO + f(O)] = ]D)ag(O).
Proof. The necessity of conditions (I)-(V) can be proved with the same arguments in the proof of Theorem
2.1 (see [6]).

Concerning the sufficiency, we can construct a solution with the declared regularity, employing Lemma
2.7 several times.

To show that the solution is unique, it suffices to consider the case that all data vanish. In this case,
let @ # 0 be a solution with the declared regularity. We set

T:=4nf{t €[0,T]: a(t,-) # 0}.

11



Then, 7 € [0,T) and ;-] = 0. By Lemma 2.7, the restriction o ] can be extended in a unique way to
a solution u with the prescribed regularity in [0, 7+ ], for some ¢ € (0, T — 7], necessarily coinciding with
@ in [0,7 + §]. But, owing to the uniqueness, u(t) = 0 Vt € [0,7 + 4], implying @(t) = 0 V¢t € [0,7 + 4],
which is in contradiction with the definition of 7.

O

We conclude with the following nonautonomous analog of Proposition 2.4:

Proposition 2.9. Suppose that (B1)-(B2) hold, with T replaced by Ty. Let 0 < T < Ty and consider
problem (2.8), with the conditions (I)-(V) in Theorem 2.8 satisfied. Then there exists C(Ty) positive,
independent of T, such that

||Dau||c%9,9([0’T]X§) + ||u||CaTe([O,T],Cz(§)) + ||u||B([O,T}CQ+9(§))
< C(TO)(”chaTs’e([o,T]xﬁ) + Zk<a HukHcﬂ+2(1—§)(§)

P9l a0 10 mywany 190052 (o ez 00y T 191BG0TIC2+000))-

Proof. Tt is analogous to the proof of Proposition 2.4. O

3 Fully nonlinear problems

Now we consider a system in the form (1.1), with the following assumptions:

(D1) Ty € RY, Q is an open, bounded subset in R™ lying on one side of its boundary OS2, which is a
n—1—submanifold of R™ of class C**?, with § € (0,1), F : [0, To] x QxRN — R, with N(n) = n®>+n+1;

(D2) o € (0,2), 0 # 2 —1;

(D3) Y(t,x) € [0,Tp] x Q F(t,x,-) € Cl(RJ\L(”)) and V,F(t,z,-) is locally Lipschitz continuous in
RN uniformly in bounded subsets of [0,Tp] x Q x RN,

(D4) ¥(z,p) € Q x RN(™)

1EC,z,p)ll a0 < C(lpl);

) + HVUF('7xvp)HCO‘79([O,T0]) -

([0.To)
with C(|p|) positive, nondecreasing in R*;

(D5) ¥(t,p) € [0, Tp] x RN

”F(ta 'vp)”C"(ﬁ) + HVUF(ta 'ap)HC"(ﬁ) < C(‘pDa

(D6)Y(t,z,p) € [0, To] x QxRN Vg € R”, Z\;,\:z Dy, F(t,2,p)q” > v(t,x,p)|q|?, with v continuous
and positive.

In order to solve (1.1), we apply Taylor’s formula: we have

F(t,z,p+q) = F(t,x,p) + Y Dy, F(t,z,p)ay +r(t,z,p.q), (3.1)

[p]<2

with r(¢,z,p,0) =0, Vgr(t,z,p,0) = 0.
From (D1)-(D6), we can write (1.1) in the form

12



Dau(t7x) = F(tvwv (Dguo(x))lpISQ) + E|p|§2 DppF(t7 &, (Dguo(x))|g|§2)(D§u(t,x) - DQUO(CL'))
-H“(t, z, (DQUO(CC))\;)\Q, (Dgu(ta .’E) - Dguo(w))\p\SQ)v te [OvT}vl' € ﬁa

u(t,z') = g(t,2’), (t,2') €[0,T] x9Q,

DFu(0,2) = u(z), x€Q,keNyk<a.

2

We begin with the following elementary lemma:

Lemma 3.1. Suppose that (D1)-(D6) hold and let v be as in (3.1). Then:
(I) let M € RY; then Ve > 0 there exists 6(M, €) > 0 such that, if (t,x,p,q) € [0, To] x QxRN ) x RN ()
and |p| < M, |q| <6(M,€), [Vqr(t,z,p,q)| <€
(IT) VM € R there exists L(M) positive such that, if t,t' € [0,To], z, 2’ € Q, p,p’,q,q" € RN™ and
max{|p|, q], |p'] ']} < M,

b
Vor(t,z,p,q) = Vr(t', ' ,p',d)| < LM)(t = ¢|% + |z — 2" + |[p = p'| + g — d'])-
Proof. 1t follows immediately from

Vor(t,z,p,q) = VpF(t,z,p+q) — VpF(t, 2, p).

Let R € R and T € (0,Tp]. We set

X(R,T) :={U e C% ([0, T); C2(Q)) N B([0,T); C**(Q)) :

3

U(0) = ug, max{||U — uo”c%g([o,:r];w(ﬁ))’ U - u0||B([0,T];CZ+9(§))} < R}

X(R,T) is a complete metric space with the metric
d(Uy, Uz) := max{||Us = Uall a0 (0 1900y 1UL = U2l pgo,myice oy b

We want to prove the following

Theorem 3.2. Suppose that (D1)-(D6) hold. Suppose, moreover, that:
(1) if k € No, k < a, up € COT20-2)(Q),
(1I) g € C([0, Tp]; C2(09)) N B([0, Tp); C2T0(NY)), Dg exists and belongs to C ¥ ([0, T); 99);
(I1I) if k € No, k < o, yur, = DFg(0);
(TV) ALF(0, - (Dfuo)y<2)] = D*g(0).
Then, for some Ry > 0, if R > Ry, there exists T(R) € (0,Tp] such that, if 0 <T < T(R), (1.1) has
a unique solution in X (R, T).

Proof. Let U € X(R,T). We consider the problem
Du(t, x) = F(t, z, (Dfuo(2))|p|<2) + 2215 <2 Dy, F(t 2, (DFuo (@) 0)<2) (Dfult, ) — Diuo(x))
+r(t, x, (DEuo(x))|p|<2, (DEU(t, 2) — DEug(2)))p1<2), t€[0,T],2 €,

u(t,z') = g(t,2’), (t,2') €[0,T] x9Q,

DFu(0,2) = ux(x), =€ QkeNyk<a.

@
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Then, by Theorem 2.8, (3.4) has a unique solution u in C([0,T]; C*(Q))N B([0, T); C?**+9(Q)), with D €
CQTG’H([O,T] x Q) and, by Proposition 2.2, u € C% ([ T]; C%(Q)). Tt is clear that U solves (1.1) if and

only if it is a fixed point of the mapping S(U) := u. If u = S(U) and v = S(V), we have
D (u =) (t,2) = 32, <2 Dp, F(t, %, (DZuo(2)) 0 <2) (DL u(t, ) — Div(t, x))
+r(t, @, (Dhuo (@) p)<2, (DRU(t, @) — Dhuo (@) p)<2)

—r(t, z, (Dhuo(x)) pj<2, (DEV (t, ) — Dbug(2))|p<2), t€[0,T], €0,

(u—2)(t,z') =0, (ta')€][0,T]x0Q,

DF(u—v)(0,2) =0, 2€Q,k€Nyk<a.

We set
RU)(t, ) = r(t, z, (Dfuo(x))|p <2, (DRU (¢, 2) — Dfuo(x))p|<2)-
IfU e X(R,T),
10 = wolleqo ez < BT
We set

My = max |(D7uo(2))0|<2|-
Let 7 € RT. Referring to Lemma 3.1, we take T such that RT® < §(Mo, 7). Then if, U,V € X (R, T),
IR(U) = RV )llcqomxa) < MU = Viieqom.c2@))-
Let t,s € [0,7],x € Q. Then
[R(U)(t, x) = R(V)(t,2) — (R(U)(s,z) — R(V)(s,2))|
=] fol Vo R(t, z, (Dhuo(x))p)<2, (DEV (t,x) — DEug(x) + T(DLU(t, x) — DEV (t,x))|,5/<2)
(DRU(t,x) — DRV(t, @) p<2)dT
~(fy VaR(s,z, (DLuo(x))|p1 <2, (DEV (5, 2) — Diug(x) + 7(DLU (s, 2) — DLV (5,))|pj<2)
(DRU(s, @) = DRV (s, @) p)<2)d7)]
< | Jo (VoR(t, 7, (Dfuo(x))pj<2, (DEV (t, x) — Dhug(x) + (DU (¢, ) — DEV (¢, @) pj<2)dr
— Jo (VoR(s, 2, (Dfug(x))|p)<2, (DEV (s, x) — Dfug(x) + 7(DEU (s, ) = DLV (5,2)) p)<2)d7|
(DU (¢, x) — DRV (¢, @) p)<2)|
+ [y IVaR(s, 2, (Dhuo()) <2, (DEV (s, ) = Do) + 7(DRU(s,@) — DLV (s, 7)) <2)|dT
(DRU(t, x) = DRV (¢, 7)) p<2) — (DEU(s, ) — DRV (s, 2))jp)<2)-

By Lemma 3.1 (II)
| fy (VgR(t, 2, (DRug(x)) <2, (DEV (t, ) — Dlug(w) + r(DRU(t, ) — DEV (£, 7))y <2)
_ fol (VgR(s, 2, (Dhug(x))|p<2, (DEV (s, 2) — DRug(x) + 7(DEU (s, 2) — DEV (s, 2))|p)<2)dT]|

<C(R)Jt - s|%
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Moreover,as D2U(0,x) = D2V (0, z),
b
(DLU(t2) — D2V (t,2)) )| € CTF U~ Vi| g

Finally,

1
/ Vo R(s, x, (Dguo(2))|pj <2, (DFV (s, 2) — Diuo () + 7(DRU(s, ) — DIV (s, 2))|p1<2)|dT <1
0

if RT'Y < §(My,n) and
[(DRU(t, @) — DRV (L, ) p)<2) — (DRU(s,2) — DLV (s, 7)) p/<2)]
< Co‘t - S|%9 ”U - V”CQTQ([O,T];Cz(ﬁ))

So

IR(U) — R(V)]| (C(R)TS + Con)|U = V|| e

o (orho@ = ¥ (0112 (@® (3.5)
if T <To(Rym) <Tp.
Let t € [0,T) and z,y € Q. Then, if U,V € X(R,T),
|R(U)(t, ) = R(V)(t,2) — (R(U)(t,y) — R(V)(t, y))]
=1 fy VoR(t,z, (Duo(x)) o<z, (DEV (t,2) — Doug(x) + (DU (t, ) — DLV (t, 7)) p)<2)
(DEU(t, x) — DRV (L, 2)) pj<2)dT
~(fy VoR(t,y, (D2uo(y))jp)<2. (DEV (t,y) — Diuo(y) + T(DEU(t,y) — DEV (t,y)) 1 <2)
(DRU(t,y) — DEV (1)) p<2)dT)]
< | Jy (VoR(t,z, (Dhuo(x)) <2, (DEV (£, ) — Dhug(x) + 7(DEU (t, x) — DLV (£, 2)) gy <2)d7
= 3 (VaR(t,y, (D2uo(y)) pi<2, (DEV (t,y) — DRuo(y) + T(DEU(t,y) — DAV (t,y))|p/<2)d7|
[(DRU(t, ) — DRV (t, ) p<2)ldT
+ fy [VaR(t,y, (Dfuo(y)) <2, (DEV (t,y) — Douo(y) + 7(DEU(t,y) — DLV (t,9)) p1<2)ld7
(DU (t, ) — DRV (t,2))jp1<2) — (DRU(t, y) — DEV(E,y)) /<2,
implying
IRU) = RV) g(o.11:00 @)y < (U — V||C%9([O7T];CQ(5) +1U =Vl go,m;c240 @) (3.6)

if0 < T <Ti(R,n) <Tp. By (3.5), (3.6) and Proposition 2.9, for any n and R positive there exists
T5(R,n) in (0, Tp] such that, if 0 < T < T5(R,n), and Uy, Us € X(R,T),

d(UhUQ)a

DO =

d(ul, UQ) S

with u; solution of (3.4), taking U = U, (5 € {1,2}).
Let Uy be the solution of (3.4) with U = ug (constant function). Then, if U € X(R,T), we have

1 R
d(u,uo) < d(u, Uo) + d(Uo,UQ) < §d((]7 Uo) + d(Uo, U()) < 5 + d(Uo,’U,o) <R
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if
R Z Qmax{”UO - UO||CQT9([O7TO];CQ(§)), ||UO - uO||B([0,Tg];Cz+9(§))}‘

With such choice of R, by the contraction mapping theorem, S is a contraction in X(R,T) and the
conclusion follows.

O

We show a result of global uniqueness:
Theorem 3.3. Suppose that (D1)-(D6) and (I)-(IV) in the statement of Theorem 3.2 hold. Let, for
j e {1,2}, v; € C([0,T);C*(Q)) N B([0, T]; C**(Q2)), with D*v; € C%0([0,T] x Q), be solutions of
(3.2). Then vy = vs.
Proof. We argue by contradiction, assuming that u # v. We set

7 =1inf{t € [0,T] : v1(¢) # v2(¢)}.

Then 0 < 7 < T and v1(7) = v2(7). So we have, for j = 1,2,
Davj (t7 :E) = F(ta €, (ngl (Ta x))lpng) + Z\p\gz D;D,;F(t’ €, (ngl (7_7 x))|p|§2)(D£vj (ta x) - ngl (7_7 l‘))

+r(t, z, (Dhvi(7,2))|p1<2, (Dhv; (t, 2) — DOv1(7,2))|p1<2), t€[0,T],2 € Q,

vi(t,z') = g(t,z'), (t,2’) €[0,T] x 09,

DFvj(0,2) = up(z), € Q,k €Ny, k <a,

implying

D*(vy = v2)(t, @) = 32 <2 Dp, F(E, 2, (DEv1(7, 2)) g <2) (D (t, ) — DEva(t, )
+r(t, z, (Dgvi (T, 2)) <2, (DEv1(t, 2) — DEV(T, 2))|p1<2)

—r(t, z, (DEvi(T,2))|p|<2, (DEv2(t, x) — Dovi(T,)))p<2), t€[0,T],x¢€ Q,

vi(t,2') —ve(t,2') =0, (¢t,2') €0,T] x 09,

DF(vy —v2)(0,2) =0, x€Q,keNyk<a.

Let 0 < <T — 7. By Proposition 2.9, there exists Cy positive independent of § such that
flvr — UzHCaTH([O,T%];CQ@) + llvr = vall g0, 74,0240 @)

< Collr (-, - (Dgvi(7, ) p <25 (DFvr — Dfoi(T,-))jpj<2)

=7 (-, -, (DRv1(T,*)) | pl<2s (Div2 — Dvy (T, ’))\P|§2)”CQTQ"’([O,T+6]><§)

= Collr(-, -, (Dgv1(T, ) p <2, (Dv1 — DEva(T,7)) | pj<2)

77ﬂ('7 K (ngl (7_’ '))|p|§27 (D§U2 - ngl (Tv '))|p|§2)

”c ([r,7+68]xQ)"

Let R € R be such that, for j = 1,2, max{||vj||C%s([T’T];CQ(§)), Vil B(fr. ;0240 @)y} < R Then, arguing
as in the proof of Theorem 3.2, we can see that, Ve > 0 there exists 6(R,¢) € (0,7 — 7], such that, if
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re3d.4

AnCaCaMal

al

ClLoSil

GaWal

Gu3

0<68<8(R,e),
(-, (DEvi (7, )l <2, (DRv1 — DRvi(7,+)) ) <2)

__r(y~,(13501(73-)Mp|§27(ljglﬁ _>1)501(7}.)NP‘SQ)H(j%g’QQTJ‘+5]X?D

S 6(”7}1 - UQHCQTS([T,T-HS];C?(ﬁ)) + Hvl - UQHB([T,T+5]§C2+9(§)))

= ¢€(flvr - U2||c%9([0,7+5];c2(§)) + flvr = U2HB([0,T+5];C2+9(§)))
We conclude that

lor = vall g o - sy.02my + 101 = 22l B, rsarezro@))

< Coclllor = vall g o, g cny T 101 = v2llzqorsaiono@)):

implying (if Coe < 1) vq)[0,7+5] = V2|[0,r+4], in contradiction with the definition of 7.
O

Remark 3.4. Theorems 3.2 and 3.3 hold if (D1)-(D6) are relaxed in the following way: the domain of
F is [0, Tp] x © x O with O open subset in RV containing (D2uo())|p|<2; moreover, the estimates of

F and its derivatives in (D3)-(D5) are uniform in any compact subset of [0, Tp] x Q x O.
Observe that, if U € X (R, T) (see (3.3)) and |p| < 2,

|DPU(t,z) — DPug(z)| < RTY, V(t,z) € [0,T] x Q.

Remark 3.5. Theorems 3.2 and 3.3 can be extended to the case that

F(t,2, (o) joj<2) = Y aol(t:, (Dp)|p1<1)Po + bt 2, (Dp)|pi<1),
lo|=2

(a) if |o] = 2, ag,b : [0,Ty] x @ x O — C, with O open subset of C"*! containing (D”uo())|,<1

;
b) the derivatives of F appearing in (D3)-(D5) are intended by identifing C"+! with R2"+1),
) 2jojm2 Ao (@, (Pp)p1<1)q” # 0 V(E, @, (Pp)jp1<1) € [0, To] x 2 x O, Vg € R™\ {0};

d) [Arg(3) 5= o (t, %, () 1p)<1)”)| < (1 = 5)7 Y(E, 2, (Pp) p<1) € [0,To] x Q2 x O, Vg € R \ {0}
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