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E-mail: davide.guidetti@unibo.it

Abstract

We consider quite general fully nonlinear mixed Cauchy-Dirichlet problems with a Caputo deriva-
tive Dα with respect to the time variable and α in (0, 2). Under natural conditions, we show the
existence of a local solution u such that Dαu and the second order space derivatives Dxixju belong

to the class C
αθ
2
,θ([0, T ]×Ω), for some T positive, with θ ∈ (0, 1). Moreover, we show the uniqueness

of global solutions in the same class of functions.

1 Introduction

se1

The aim of this paper is the study of fully nonlinear Cauchy-Dirichlet systems in the form
Dαu(t, x) = F (t, x, (Dρ

xu(t, x))|ρ|≤2), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α,

(1.1) eq2.1

Here F is a real valued function with domain [0, T0]× Ω× RN(n), with T0 ∈ R+, Ω is an open bounded
subset of Rn with appropriately regular boundary ∂Ω, N(n) = n2 +n+ 1. The main feature of F is that,
if we indicate with (t, x, p) = (t, x, (pρ)|ρ|≤2) (ρ ∈ Nn0 ) the generic element of [0, T0]× Ω× RN(n),∑

|ρ|=2

DpρF (t, ·, p)ξρ ≥ ν(t, x, p)|ξ|2 ∀ξ ∈ Rn

with ν continuous and positive (for precise assumptions see Section 3). Dα indicates the Caputo time
derivative of order α ∈ R+, which is described in Definition 1.1.

Some variations of this situation are briefly discussed in Remarks 3.4 and 3.5.
Problems with fractional time derivatives arise as mathematical models of complex systems which

exhibit anomalous diffusion, appearing, for example, in strongly porous materials and percolation clusters.
A clear discussion of anomalous diffusion taking to fractional order derivatives is given, for example, in
[8]. See also [10] for further applications and motivations.

Before illustrating more in detail the content of the present paper, we cite some literature dealing
with nonlinear problems with fractional time derivatives.

∗The author is member of GNAMPA of Istituto Nazionale di Alta Matematica
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A general problem in the form (1.1) is studied in [9], looking for viscosity solutions in the case
α ∈ (0, 1), both with Dirichlet and Neumann boundary conditions. The assumptions on F , which is
assumed to be merely continuous, allow a degenerate ellipticity. Assuming that a subsolution and a
supersolution exist, a theorem of existence and uniqueness of a solution is proved. Such solution is (a
priori) just continuous.

Abstract quasilinear evolution equations in the form Dαu(t) +A(u)u = f(u) + h(t),

u(0) = x
(1.2) eq0.3

are discussed in [3]. The authors work in continuous interpolation spaces allowing a singularity in t = 0,
but such that, for u in the class of solutions, u(0) is defined. Operators A(u) are supposed to be positive
(in the sense that their resolvent set contains (−∞, 0], which maximal decrease of (λ − A(u))−1) and
results of maximal regularity are proved for corresponding linear problems. These results are employed
to prove the existence of local solutions of systems in the form (1.2) and are applied to quasilinear
Cauchy-Dirichlet problems in the form

Dαu(t)− (σ(ux))x = h(t, x), x ∈ (0, 1), t ≥ 0

u(0, x) = u0(x), x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0

(1.3) eq1.3A

in case h(·, 0) = h(·, 1) = 0. Their abstract linear theory is applicable because the operator

A(u) = σ′(ux)D2
x

is positive in the class of Hölder continuous functions vanishing in {0, 1}. Unfortunately, this does not
happen in the larger class of Hölder continuous functions. So, if, for example, h(·, 0) or h(·, 1) do not
vanish identically, the application of their abstract theory becomes problematic.

Zacher studies in [11] the quasilinear Cauchy-Dirichlet problem
Dαu =

∑n
i=1

∑n
j=1Dxi(aij(u)Dxju) = f, t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

u(0, x) = u0(x), x ∈ Ω, k ∈ N0, k < α,

with α ∈ (0, 1), in an Lp setting. Notably, he proves a result of uniqueness and global existence of a
solution.

A result of global existence for a problem similar to (1.3), with the Riemann-Liouville Dα
t replacing

Dα is proved in [2], under the condition 0 < σ0 ≤ σ′(y) ≤ σ1 < ∞, and σ1

σ0
sufficiently small. The

same thesis [2] contains a result of maximal regularity for the abstract equation (with a suitable initial
condition)

Dα
t u(t) +Au(t) 3 f(t),

with A m−accretive in the Hilbert space H.
The majority of papers dedicated to nonlinear evolution equations with fractional time derivative

concerns semilinear systems. For them, we refer to the preprint [4], which contains a large bibliography.
We mention also [1], where the authors study a problem in the form Dαu(t) = Au(t) + f(t, u(t)), t > 0, t ≥ 0,

u(0) = u0,

with A linear sectorial operator in the Banach space X. They prove the existence and uniqueness of
a maximal local mild solution. It is considered the case that, for some interval [γ0, γ1], f is Lipschitz
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continuous in the variable u from X1+ε = D(A1+ε) to Xγ(ε) with γ(ε) ≥ ρε, ρ > 1. If X is ordered, for
different functions f , called f1 and f2, with f1 ≤ f2, a comparison between the corresponding solutions
uj is proved.

The aim of this paper is to show a result of local existence and global uniqueness of a solution to (1.1),

extending the classical linear C1+ θ
2 ,2+θ theory in case α = 1 to the case α ∈ (0, 2) and fully nonlinear

problems. In the linear case with α = 1 necessary and sufficient conditions on f , g,u0, g are known in
order that there exists a unique solution u in the class C1+ θ

2 ,2+θ (see [7], Theorem 5.1.16). The fully
nonlinear case was studied in [7], chapter 8.5.3, with first order boundary conditions, by the method of
linearization. This method can be easily adapted to the case of Dirichlet boundary conditions.

Concerning the case α 6= 1, the problem has to be slightly reformulated; the belonging of u to
C1+ θ

2 ,2+θ([0, T ]× Ω) is equivalent to the belonging of Dtu and Dxixju to C
θ
2 ,θ([0, T ]× Ω) (1 ≤ i, j ≤ n,

the space dimension of Ω), but its natural generalization for α ∈ (0, 2) that the belonging of u to

Cα+αθ
2 ,2+θ([0, T ] × Ω) is equivalent to the belonging of Dαu and Dxixju to C

αθ
2 ,θ([0, T ] × Ω) is false

(see Remark 2.3) and, in fact, no regularity in time better than Cα can be, in general, expected. So

we shall look for a solution u such that Dαu and Dxixju belong to C
αθ
2 ,θ([0, T ] × Ω). It turns out that

these conditions imply that u ∈ C
αθ
2 ([0, T ];C2(Ω)) ∩ B([0, T ];C2+θ(Ω)) (B stands for ”bounded”, see

the following for the notation). So we shall employ the linearization method, looking for a fixed point to

which the contraction mapping theorem can be applied not in the class Cα+αθ
2 ,2+θ([0, T ]×Ω), but in the

larger class C
αθ
2 ([0, T ];C2(Ω))∩B([0, T ];C2+θ(Ω)). Such fixed point u has Dαu in C

αθ
2 ,θ([0, T ]×Ω) and

so our result is a generalization of the result described in the case α = 1. The main tool of this project
is Theorem 2.1, which is an extension to the case α ∈ (0, 2) of the classical maximal regularity result

prescribing necessary and sufficient conditions for solutions in the class C1+ θ
2 ,2+θ([0, T ]×Ω) in the linear

case, with α = 1.
The content of the paper is the following: in this Section 1 we introduce some notations and basic

results which we shall employ.
Section 2 contains the linear theory. We begin by stating the crucial Theorem 2.1 and Proposition 2.2,

and extend them, with Theorem 2.8, to the nonautonomous case. In Section 3, we consider the nonlinear
problem (1.1), showing a result of existence of a local solution (Theorem 3.2) and a result of uniqueness
of a global solution (Theorem 3.3), with possible extensions to more general domains of F (Remark 3.4)
and to certain quasilinear problems (Remark 3.5).

Now we introduce some notations which we are going to use in the paper.
C will indicate a positive real constant we are not interested to precise (the meaning of which may be

different from time to time). In a sequence of inequalities, we shall write C0, C1, C2, . . . . If C depends
on α, we shall write C(α) or C0(α), C1(α), C2(α), . . . . Analogously, if δ is a parameter depending on
α, β, . . . , we shall write δ(α, β, . . . ).

If α ∈ R, [α] will indicate the maximum integer less or equal than α. R+ will indicate the set of
(strictly) positive real numbers.

If f is a function defined in the cartesian product [0, T ]× A, we shall not distinguish between f and
the function t→ f(t, ·), which has domain [0, T ] and may be with values in some space of functions with
domain A.

If X is a complex Banach space with norm ‖·‖, B([0, T ];X) will indicate the class of bounded functions
with values in X with domain [0, T ]; if A is a (generally unbounded) linear operator from D(A) ⊆ X to
X, ρ(A) will indicate the resolvent set of A. If A is a closed operator in X, A : D(A)(⊆ X)→ X, D(A),
equipped with the norm

‖x‖D(A) := ‖x‖+ ‖Ax‖

is a Banach space.
If X and Y are Banach spaces, we shall indicare with L(X,Y ) the Banach space of linear, bounded

operators from X to Y , equipped with its natural norm. In case X = Y , we shall simply write L(X).
Given a function f with domain Ω, with Ω subset of Rn, γf will indicate the trace of f on the

boundary ∂Ω of Ω.
If β ∈ N0 and Ω is an open, bounded subset of Rn, we shall indicate with Cβ(Ω) the class of complex

valued functions which are continuous in Ω, together with their derivatives (extensible by continuity to
Ω) of order not exceeding β. If β ∈ R+ \ N, Cβ(Ω) will indicate the class of functions in C [β](Ω) whose
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derivatives of order [β] are Hölder continuous of order β− [β] in Ω. We shall equip Cβ(Ω) with the norm

‖f‖Cβ(Ω) := max{ max
‖ρ|≤[β]

‖Dρf‖C(Ω), max
|ρ|=[β]

sup
x,y∈Ω,x 6=y

|Dρf(x)−Dρf(y)|
|x− y|β−[β]

}. (1.4) eq2.1A

These definitions admit natural extensions to function with values in a Banach space X. In this case, we
shall use the notation Cβ(Ω;X) (in particular Cβ([a, b];X) in case Ω = (a, b) ⊆ R). All these classes will
be assumed to be equipped with natural norms, obtained from (1.4) replacing the absolute value with
the norm in X.

By local charts, if ∂Ω is sufficiently regular, we can consider also the spaces Cβ(∂Ω;X).
If α, β ∈ [0,∞), T ∈ R+ and Ω is an open bounded subset of Rn, we set

Cα,β([0, T ]× Ω) := Cα([0, T ];C(Ω)) ∩B([0, T ];Cβ(Ω)).

This space will be equipped with the norm

‖f‖Cα,β([0,T ]×Ω) := max{‖f‖Cα([0,T ];C(Ω)), ‖f‖B([0,T ];Cβ(Ω))}.

An analogous meaning will have Cα,β([0, T ] × ∂Ω). If X is a Banach space, Lip([0, T ];X) will indicate
the class of Lipschitz continuous functions from [0, T ], equipped with the natural norm

‖f‖Lip([0,T ];X) := max{‖f‖C([0,T ];X), sup
s,t∈[0,T ],s6=t

‖f(t)− f(s)‖
|t− s|

}.

We pass to define the Caputo time derivative of order α ∈ R+. Such derivative can be introduced in
different ways (see, for example, [10] 2.4). We adopt the following definition: if f ∈ C([0, T ];X) (with X
Banach space), we introduce the operator Jα defined as

Jαf(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

It turns out that Jα is injective and, if α ≥ m, with m ∈ N0, Jαf ∈ Cm([0, T ];X), and (Jmf)(m) = f .
This justifies the following

de2.2 Definition 1.1. Let α ∈ R+, m = [α] (the integer part of α), u ∈ Cm([0, T ];X), with T ∈ R+ and
X Banach space. We write that the Caputo derivative Dαu is defined (in [0, T ]) if there exists f ∈
C([0, T ];X) such that

u(t)−
∑

j∈N0,j<α

tj

j!
u(j)(0) = Jαf(t) ∀t ∈ [0, T ].

In this case we define
Dαu := f.

Of course, in case α ∈ N, Dαu is defined if and only if u ∈ Cα([0, T ];X) and Dαu coincides with the
classical derivative Dαu. It is also easily seen that, if 0 < T < T1 and Dαu is defined in [0, T1], it is
defined also in [0, T ] and the derivative in [0, T ] is the restriction of the derivative in [0, T1].

We shall employ also the following

pr2.3 Proposition 1.2. Let Ω be an open, bounded subset in Rn, locally lying on one side of its boundary
∂Ω, which is a submanifold of Rn of dimension n − 1 and class Cr, with r ≥ 1. Let 0 ≤ β0 < β1 ≤ r.
Then, ∀ξ ∈ (0, 1) C(1−ξ)β0+ξβ1(Ω) ∈ Jξ(C

β0(Ω), Cβ1(Ω)), that is, there exists C positive such that, if
f ∈ Cβ1(Ω),

‖f‖C(1−ξ)β0+ξβ1 (Ω) ≤ C‖f‖
1−ξ
Cβ0 (Ω)

‖f‖ξ
Cβ1 (Ω)

;

the same holds if we replace Ω with ∂Ω.

Proof. See [5], Proposition 1.1.
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We shall employ also the following result of extension:

pr2.5 Proposition 1.3. Let Ω fulfill the conditions of Propositin 1.2. Then there exists an element R of
L(C(∂Ω), C(Ω)) such that γ(Rg) = g ∀g ∈ C(∂Ω). Moreover, ∀ξ ∈ [0, r] the restriction of R to Cξ(∂Ω)
belongs to L(Cξ(∂Ω), Cξ(Ω)).

For a proof, see [6], Lemma 2.1(IV).

2 Linear equations
se2A

We begin by considering the linear problem
Dαu(t, x) = A(x,Dx)u(t, x) + f(t, x), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α.

(2.1) eq1.3

(A1) Ω is an open, bounded subset in Rn lying on one side of its boundary ∂Ω, which is a n −
1−submanifold of Rn of class C2+θ, with θ ∈ (0, 2) \ {1}.

(A2) α ∈ (0, 2), A(x,Dx) =
∑
|ρ|≤2 aρ(x)Dρ

x, with aρ ∈ Cθ(Ω), aρ complex valued; A(x,Dx) is

assumed to be elliptic, in the sense that
∑
|ρ|=2 aρ(x)ξρ 6= 0 ∀ξ ∈ Rn \ {0}; moreover,

|Arg(
∑
|ρ|=2

aρ(x)ξα)| < (1− α

2
)π, ∀x ∈ Ω,∀ξ ∈ Rn \ {0}.

(A3) αθ < 2, θ 6= 2
α − 1.

The following result is proved in [6], Theorem 1.2:

th1.2 Theorem 2.1. Suppose that (A1)-(A3) hold. Then the following conditions are necessary and sufficient
in order that (2.1) has a unique solution u in C([0, T ];C2(Ω)) ∩B([0, T ];C2+θ(Ω)), with Dαu,A(·, Dx)u

belonging to C
αθ
2 ,θ([0, T ]× Ω):

(I) f ∈ C αθ
2 ,θ([0, T ]× Ω);

(II) if k ∈ N0, k < α, uk ∈ Cθ+2(1− kα )(Ω).

(III) g ∈ C([0, T ];C2(∂Ω)) ∩B([0, T ];C2+θ(∂Ω)), Dαg exists and belongs to C
αθ
2 ,θ([0, T ]× ∂Ω);

(IV) if k ∈ N0, k < α, γuk = Dk
t g(0);

(V) γ[A(·, Dx)u0 + f(0)] = Dαg(0).

The following regularity result will be employed:

pr1.5A Proposition 2.2. Suppose that (A1) holds and let u ∈ C([0, T ];C2(Ω)) ∩B([0, T ];C2+θ(Ω)), α ∈ (0, 2),

Dαu ∈ C([0, T ];C(Ω)) ∩ B([0, T ];Cθ(Ω)). Then u ∈ C αθ
2 ([0, T ];C2(Ω)). A similar result holds if Ω is

replaced by ∂Ω.

Proof. See [6], Lemma 3.1.

re1.6 Remark 2.3. As already observed, if the assumptions of Theorem 2.1 are satisfied and α = 1, the
solution u belongs to C1+ θ

2 ([0, T ];C(Ω)), so that u ∈ C1+ θ
2 ,2+θ([0, T ] × Ω). If α 6= 1, in general u does

not belong to Cα+αθ
2 ([0, T ];C(Ω)). See for this Remark 4.2 in [6].

We shall need also some information concerning the dependence of the solution u of (2.1) on the data
and T . Moreover, we want to study a nonautonomous version of (2.1). So we begin with the following
proposition, concerning the dependence of some norms of the solution on T .
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pr1.5 Proposition 2.4. Consider problem (2.1), with the assumptions (A1)-(A3). Let T0 ∈ R+. Then there
exists C(T0) in R+ such that, ∀T ∈ (0, T0], the solution u as in Theorem 2.1 satisfies the estimate

‖Dαu‖
C
αθ
2
,θ([0,T ]×Ω))

+ ‖u‖B([0,T ];C2+θ(Ω)) + ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

≤ C(T0)(‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω)) + ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

).

(2.2) eq1.4A

Proof. Let R be the operator described in Proposition 1.3. We set

v(t, x) := R[g(t, ·)](x).

Then v ∈ C αθ
2 ([0, T ];C2(Ω)) ∩ B([0, T ];C2+θ(Ω)), Dαv is defined and belongs to C

αθ
2 ,θ([0, T ] × Ω). In

fact, for example,

g(t, ·)−
∑
k<α

tk

k!
Dk
t g(0) =

1

Γ(α)

∫ t

0

(t− s)α−1Dαg(s, ·)ds,

so that

v(t, ·)−
∑
k<α

tk

k!
Dk
t v(0) =

1

Γ(α)

∫ t

0

(t− s)α−1R(Dαg(s, ·))ds

and
Dαv = R(Dαg).

So we have

‖v‖B([0,T ];C2+θ(Ω)) + ‖v‖
C
αθ
2 ([0,T ];C2(Ω))

+ ‖Dαv‖
C
αθ
2
,θ([0,T ]×Ω)

≤ C0(‖g‖B([0,T ];C2+θ(∂Ω)) + ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

+ ‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω)

),
(2.3) eq2.2A

with C0 independent of T . We deduce

‖A(·, Dx)v‖
C
αθ
2
,θ([0,T ]×Ω)

≤ C1(‖v‖
C
αθ
2 ([0,T ];C2(Ω))

+ ‖v‖B([0,T ];C2+θ(Ω))

≤ C2(‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω))),
(2.4) eq2.4

with C2 independent of T . By difference we have:
Dα(u− v)(t, x) = A(x,Dx)(u− v)(t, x) + φ(t, x), t ∈ [0, T ], x ∈ Ω,

(u− v)(t, x′) = 0, (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t (u− v)(0, x) = uk(x)−Rγuk(x), x ∈ Ω, k ∈ N0, k < α,

with
φ(t, x) = f(t, x)− (Dαv(t, x)−A(x,Dx)v(t, x)).

We set

φ̃(t, ·) =

 φ(t, ·) if t ∈ [0, T ],

φ(T, ·) if t ∈ [T, T0].

Then φ̃ ∈ C αθ
2 ,θ([0, T0]× Ω)). We consider the problem

Dαz(t, x) = A(x,Dx)z(t, x) + φ̃(t, x), t ∈ [0, T0], x ∈ Ω,

z(t, x′) = 0, (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t z(0, x) = uk(x)−Rγuk(x), x ∈ Ω, k ∈ N0, k < α,

(2.5) th2.4
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By Theorem 2.1, (2.5) has a unique solution z in C([0, T0];C2(Ω))∩B([0, T0];C2+θ(Ω)) with Dαz belonging

to C
αθ
2 ,θ([0, T0]× Ω). Moreover, as

‖φ̃‖
C
αθ
2
,θ([0,T0]×Ω))

= ‖φ‖
C
αθ
2
,θ([0,T ]×Ω))

,

‖Dαz‖
C
αθ
2
,θ([0,T0]×Ω))

+ ‖z‖B([0,T0];C2+θ(Ω)) + ‖z‖
C
αθ
2 ([0,T0];C2(Ω))

≤ C0(T0)(‖φ̃‖
C
αθ
2
,θ([0,T0]×Ω))

+
∑
k<α ‖uk −Rγuk‖Cθ+2(1− k

α
)(Ω)

)

≤ C1(T0)(‖φ‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

)

≤ C2(T0)(‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+ ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω)) + ‖Dαg‖
C
αθ
2
,θ([0,T0]×∂Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

).

(2.6) eq2.5A

So, from (2.3) and (2.6) we deduce

‖Dαu‖
C
αθ
2
,θ([0,T ]×Ω))

+ ‖u‖B([0,T ];C2+θ(Ω)) + ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

≤ ‖Dαv‖
C
αθ
2
,θ([0,T ]×Ω))

+ ‖v‖B([0,T ];C2+θ(Ω)) + ‖v‖
C
αθ
2 ([0,T ];C2(Ω))

+‖Dαz‖
C
αθ
2
,θ([0,T0]×Ω))

+ ‖z‖B([0,T0];C2+θ(Ω)) + ‖z‖
C
αθ
2 ([0,T0];C2(Ω))

≤ C(T0)(||g||B([0,T ];C2+θ(∂Ω)) + ‖|g||
C
αθ
2 ([0,T ];C2(∂Ω))

+ ‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω)

+‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

)

on account of (2.3) and (2.4).

We examine the variation of the constant C(T0) in (2.2) as we modify A(x,Dx).

le2.5 Lemma 2.5. Suppose that the conditions (A1)-(A3) are fulfilled. Let T0 ∈ R+, 0 < T ≤ T0 and
let f, uk (k < α), g satisfy the conditions (I)-(IV) in the statement of Theorem 2.1. Let B(x,Dx) =∑
|ρ|≤2 bρ(x)Dρ

x, with bρ ∈ Cθ(Ω) and

max
|ρ|≤2

‖bρ − aρ‖C(Ω) ≤ δ, max
|ρ|≤2

‖bρ − aρ‖Cθ(Ω) ≤ R,

with δ,R positive. We consider the system
Dαu(t, x) = B(x,Dx)u(t, x) + f(t, x), t ∈ [0, τ ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α,

(2.7) eq2.5

with γ[B(·, Dx)u0 + f(0)] = Dαg(0).
Then there exists δ0 positive, depending on (aρ)ρ≤2, R and T0, such that, if δ ≤ δ0, (2.7) has a unique

solution u in C([0, T ];C2(Ω)) ∩ B([0, T ];C2+θ(Ω)), with Dαu,B(·, Dx)u belonging to C
αθ
2 ,θ([0, T ] × Ω);

moreover,
‖Dαu‖

C
αθ
2
,θ([0,T ]×Ω))

+ ‖u‖B([0,T ];C2+θ(Ω)) + ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

≤ C(T0, R, (aρ)|ρ|≤2)(‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω)) + ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

).
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Proof. We write (2.7) in the form
Dαu(t, x) = A(x,Dx)u(t, x) + [B(x,Dx)−A(x,Dx)]u(t, x) + f(t, x), t ∈ [0, τ ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α.

It is easily seen that, if δ is sufficiently small, B(x,Dx) satisfies the condition (A2). So, by Theorem 2.1,
a solution u with the declared regularity exists. From (2.2) and Proposition 2.4

‖Dαu‖
C
αθ
2
,θ([0,T ]×Ω))

+ ‖u‖B([0,T ];C2+θ(Ω)) + ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

≤ C(θ, T0)(‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω)) + ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

+‖[B(·, Dx)−A(·, Dx)]u‖
C
αθ
2
,θ([0,T ]×Ω))

).

and, employing Proposition 1.2,

‖[B(·, Dx)−A(·, Dx)]u‖
C
αθ
2
,θ([0,T ]×Ω))

≤
∑
|ρ|≤2(‖aρ − bρ‖C(Ω)‖Dρ

xu‖C αθ
2 ([0,T ];C(Ω))

+
∑[θ]
j=0 ‖aρ − bρ‖Cj(Ω)‖Dρu‖B([0,T ];Cθ−j(Ω))

+
∑[θ]
j=0 ‖aρ − bρ‖Cj+θ−[θ](Ω)‖Dρu‖B([0,T ];C[θ]−j(Ω)))

≤ C(n,Ω)(δ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

+
∑[θ]
j=0 δ

1− jθR
j
θ ‖u‖B([0,T ];Cθ−j+2(Ω))

+
∑[θ]
j=0 δ

[θ]−j
θ R1− [θ]−j

θ ‖u‖B([0,T ];C2+[θ]−j)(Ω)))

≤ C(n,Ω)[ωθ(δ,R)(‖u‖
C
αθ
2 ([0,T ];C2(Ω))

+ ‖u‖B([0,T ];C2+θ(Ω))) +R‖u‖B([0,T ];C2(Ω))],

with lim
δ→0

ωθ(R, δ) = 0. Taking δ so small that C(θ, T0)C(n,Ω)ωθ(δ,R) ≤ 1
2 , we deduce

‖Dαu‖
C
αθ
2
,θ([0,T ]×Ω))

+ ‖u‖B([0,T ];C2+θ(Ω)) + ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

≤ 2C(θ, T0)(‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω)) + ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

+C(n,Ω)R‖u‖B([0,T ];C2(Ω))).

Now we fix θ′ in (0, θ) \ {1}. Then, there exists C(θ′, T0) positive such that

‖Dαu‖
C
αθ′
2
,θ′ ([0,T ]×Ω))

+ ‖u‖B([0,T ];C2+θ′ (Ω)) + ‖u‖
C
αθ′
2 ([0,T ];C2(Ω))

≤ C(θ′, T0)(‖f‖
C
αθ′
2
,θ′ ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ′+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ′
2
,θ′ ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ′ (∂Ω)) + ‖g‖
C
αθ′
2 ([0,T ];C2(∂Ω))

+‖[B(·, Dx)−A(·, Dx)]u‖
C
αθ′
2
,θ′ ([0,T ]×Ω))

)
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and

‖[B(·, Dx)−A(·, Dx)]u‖
C
αθ′
2
,θ′ ([0,T ]×Ω))

≤
∑
|ρ|≤2(‖aρ − bρ‖C(Ω)‖Dρ

xu‖
C
αθ′
2 ([0,T ];C(Ω))

+
∑[θ]
j=0 ‖aρ − bρ‖Cj(Ω)‖Dρu‖B([0,T ];Cθ′−j(Ω))

+
∑[θ]
j=0 ‖aρ − bρ‖Cj+θ′−[θ](Ω)‖Dρu‖B([0,T ];C[θ]−j(Ω)))

≤ C(n,Ω)ωθ′(δ,R)(‖u‖
C
αθ′
2 ([0,T ];C2(Ω))

+ ‖u‖B([0,T ];C2+θ′ (Ω))),

with lim
δ→0

ωθ′(R, δ) = 0. Taking δ so small that C(θ)ωθ′(R, δ) ≤ 1
2 , we deduce

‖u‖B([0,T ];C2(Ω)) ≤ ‖u‖B([0,T ];C2+θ′ (Ω))

≤ 2C(θ′, T0)(‖f‖
C
αθ′
2
,θ′ ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ′+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ′
2
,θ′ ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ′ (∂Ω)))

≤ C(θ′,Ω, T0)(‖f‖
C
αθ
2
,θ([0,T ]×Ω))

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω))

+ ‖g‖B([0,T ];C2+θ(∂Ω)))

which completes the proof.

co2.6 Corollary 2.6. Suppose that Ω is as in (A1). Consider, for R, ν, ε positive the class of coefficients

C(R, ν, ε) := {(aρ)|ρ|≤2 : aρ ∈ Cθ(Ω), ‖aρ‖Cθ(Ω) ≤ R, |
∑
|ρ|=2 aρ(x)ξρ| ≥ ν|ξ|2 ∀x ∈ Ω, ξ ∈ Rn,

|Arg(
∑
|ρ|=2 aρ(x)ξα)| ≤ (1− α

2 )π − ε,∀x ∈ Ω, ξ ∈ Rn \ {0}}.

Given (aρ)|ρ|≤2 in C(R, ν, ε), consider problem (2.1). Then, for any T0 positive, the constant C(T0) in
the estimate (2.2) can be chosen independently of (aρ)|ρ|≤2 and T ∈ (0, T0].

Proof. Let T0 ∈ R+. By Lemma 2.5, for any (aρ)|ρ|≤2 ∈ C(R, ν, ε) there exists δ((aρ)|ρ|≤2) positive such
that the conclusion holds for

{(bρ)|ρ|≤2 ∈ C(R, ν, ε) : max
|ρ|≤2

‖bρ − aρ‖C(Ω) < δ((aρ)|ρ|≤2)}.

The conclusion follows from the fact that C(R, ν, ε) is compact in C(Ω)n
2+n+1, by the theorem of Ascoli-

Arzelà.

Now we consider the nonautonomous system
Dαu(t, x) = A(t, x,Dx)u(t, x) + f(t, x), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α,

(2.8) eq1.8

with the following conditions:
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(B1) θ ∈ R+ \ N, 0 < θ < 2; Ω is an open, bounded subset in Rn lying on one side of its boundary
∂Ω, which is a n− 1−submanifold of Rn of class C2+θ.

(B2) α ∈ (0, 2), A(t, x,Dx) =
∑
|ρ|≤2 aρ(t, x)Dρ

x, with aρ ∈ C
αθ
2 ,θ([0, T ] × Ω)), complex valued;

∀t ∈ [0, T ] A(t, x,Dx) is assumed to be elliptic, in the sense that
∑
|ρ|=2 aρ(t, x)ξρ 6= 0 ∀ξ ∈ Rn \ {0}; we

suppose, moreover, that

|Arg(
∑
|ρ|=2

aρ(t, x)ξα)| < (1− α

2
)π, ∀x ∈ Ω,∀ξ ∈ Rn \ {0}.

le1.14 Lemma 2.7. Suppose that (B1)-(B2) and the conditions (I)-(IV) of Theorem 2.1 hold; moreover,

γ[A(0, ·, Dx)u0 + f(0, ·)] = Dαg(0).

Suppose also that, for some τ ∈ [0, T ), (2.8) has a solution ũ in [0, τ ], with Dαũ ∈ C
αθ
2 ([0, τ ] × Ω)),

ũ ∈ C([0, τ ];C2(Ω)) ∩B([0, τ ];C2+θ(Ω)).
Then there exists δ ∈]0, T ], independent of τ , such that (2.8) has a unique solution u in [0,min{τ +

δ, T}] with Dαu ∈ C αθ
2 ,θ([0, τ + δ]× Ω), u ∈ C([0, τ + δ];C2(Ω)) ∩B([0, τ + δ];C2+θ(Ω)) and u|[0,τ ] = ũ.

Proof. Of course, if τ = 0, no function ũ is given. In this case, we show only the existence and uniqueness
of a solution with the declared properties in [0, δ].

Let δ ∈ (0, T − τ ]. We consider the class

Xτ,δ := {U ∈ C αθ
2 ([0, τ + δ]);C2(Ω)) ∩B([0, τ + δ]);C2+θ(Ω)) : U|[0,τ ] = ũ}.

In case τ = 0, we simply set

X0,δ := {U ∈ C αθ
2 ([0, δ]);C2(Ω)) ∩B([0, δ]);C2+θ(Ω)) : U(0) = u0}.

Xτ,δ is a complete metric space with the distance

d(U1, U2) := max{‖U1 − U2‖
C
αθ
2 ([0,τ+δ];C2(Ω))

, ‖U1 − U2‖B([0,τ+δ];C2+θ(Ω))}

= max{‖U1 − U2‖
C
αθ
2 ([τ,τ+δ];C2(Ω))

, ‖U1 − U2‖B([τ,τ+δ];C2+θ(Ω))}.

An element of Xτ,δ is, for example,

U(t, x) =

 ũ(t, x) if t ∈ [0, τ ],

ũ(τ, x) if t ∈ [τ, τ + δ].

We recall that, by Proposition 2.4, if a solution with the declared properties exists, it belongs to Xτ,δ.
For each U in Xτ,δ we consider the system

Dαu(t, x) = A(τ, x,Dx)u(t, x) + [A(t, x,Dx)−A(τ, x,Dx)]U(t, x) + f(t, x), t ∈ [0, (τ + δ) ∧ T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α.

(2.9) eq1.9

By Theorem 2.1, (2.9) has a unique solution u = S(U), with Dαu ∈ C αθ
2 ,θ([0, τ + δ]× Ω), u ∈ C([0, τ +

δ];C2(Ω))∩B([0, τ+δ];C2+θ(Ω)). On account of the uniqueness of the solution in [0, τ ] in the autonomous
case, we deduce that S(U)|[0,τ ] = ũ and so S(U) ∈ Xτ,δ. Therefore, if U1, U2 ∈ Xτ,δ and v = S(U1) −
S(U2),

Dαv(t, x) = A(τ, x,Dx)v(t, x) + [A(t, x,Dx)−A(τ, x,Dx)](U1 − U2)(t, x), t ∈ [0, (τ + δ) ∧ T ], x ∈ Ω,

v(t, x′) = 0, (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t v(0, x) = 0, x ∈ Ω, k ∈ N0, k < α.
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By Corollary 2.6, there exists C(θ) positive, independent of τ , such that

d(S(U1), S(U2)) ≤ C(θ)‖[A(t, x,Dx)−A(τ, x,Dx)](U1 − U2)‖
C
αθ
2
,θ([τ,τ+δ]×Ω)

.

Let R ∈ R+, with max|ρ|≤2 ‖aρ(t, ·)‖
C
αθ
2
,θ([0,T ]×Ω)

≤ R. Then

‖aρ(t, ·)− aρ(τ, ·)‖C(Ω) ≤ R|t− τ |
αθ
2 .

If |ρ| ≤ 2,we deduce, for 0 ≤ σ ≤ θ,

‖aρ(t, ·)− aρ(τ, ·)‖Cσ(Ω) ≤ C(σ)|t− τ |
α(θ−σ)

2 R.

Arguing as in the proof of Lemma 2.5, we deduce

d(S(U1), S(U2)) ≤ ω1(R, δ)d(U1, U2) + C1R‖U1 − U2‖C([τ,τ+δ];C2(Ω)),

with lim
δ→0

ω1(R, δ) = 0 and C1 independent of τ . We have also, for σ ∈ [0, αθ2 ],

‖aρ‖Cσ([τ,τ+δ];C(Ω)) ≤ Rδ
αθ
2 −σ.

So, again arguing as in the proof of Lemma 2.5, taking θ′ ∈ (0, θ) \ {1}, we deduce

‖S(U1)− S(U2)‖C([τ,τ+δ];C2(Ω)) ≤ ‖U1 − U2‖B([τ,τ+δ];C2+θ′ (Ω))

≤ ω2(R, δ)d(U1, U2),

again with ω2(R, δ) independent of τ and lim
δ→0

ω2(R, δ) = 0. We deduce that

d(S2(U1), S2(U2))

≤ ω1(R, δ)d(S(U1), S(U2)) + C1R‖S(U1)− S(U2)‖C([τ,τ+δ];C2(Ω))

≤ ω1(R, δ)(ω1(R, δ)d(U1, U2) + C1R‖U1 − U2‖C([τ,τ+δ];C2(Ω)) + C1Rω2(R, δ)d(U1, U2).

We conclude that, for some δ positive independent of τ , S2 is a contraction in Xτ,δ and the conclusion
follows.

From Lemma 2.7 we immediately deduce the following

th1.15 Theorem 2.8. Suppose that (B1)-(B2) hold. Consider system (2.8). Then the following conditions
are necessary and sufficient in order that there exist a unique solution u such that Dαu belongs to
C
αθ
2 ,θ([0, T ]× Ω)) and u ∈ C αθ

2 ([0, T ];C2(Ω)) ∩B([0, T ];C2+θ(Ω)):

(I) f ∈ C αθ
2 ,θ([0, T ]× Ω);

(II) if k ∈ N0, k < α, uk ∈ Cθ+2(1− kα )(Ω);

(III g ∈ C[0, T ];C2(∂Ω)) ∩B([0, T ];C2+θ(∂Ω)), Dαg ∈ C αθ
2 ,θ([0, T ]× Ω);

(IV) γuk = Dk
t g(0) (k < α);

(V) γ[A(0, ·, Dx)u0 + f(0)] = Dαg(0).

Proof. The necessity of conditions (I)-(V) can be proved with the same arguments in the proof of Theorem
2.1 (see [6]).

Concerning the sufficiency, we can construct a solution with the declared regularity, employing Lemma
2.7 several times.

To show that the solution is unique, it suffices to consider the case that all data vanish. In this case,
let ũ 6= 0 be a solution with the declared regularity. We set

τ := inf{t ∈ [0, T ] : ũ(t, ·) 6= 0}.

11



Then, τ ∈ [0, T ) and ũ|[0,τ ] = 0. By Lemma 2.7, the restriction ũ|[0,τ ] can be extended in a unique way to
a solution u with the prescribed regularity in [0, τ +δ], for some δ ∈ (0, T −τ ], necessarily coinciding with
ũ in [0, τ + δ]. But, owing to the uniqueness, u(t) = 0 ∀t ∈ [0, τ + δ], implying ũ(t) = 0 ∀t ∈ [0, τ + δ],
which is in contradiction with the definition of τ .

We conclude with the following nonautonomous analog of Proposition 2.4:

pr1.16 Proposition 2.9. Suppose that (B1)-(B2) hold, with T replaced by T0. Let 0 < T ≤ T0 and consider
problem (2.8), with the conditions (I)-(V) in Theorem 2.8 satisfied. Then there exists C(T0) positive,
independent of T , such that

‖Dαu‖
C
αθ
2
,θ([0,T ]×Ω)

+ ‖u‖
C
αθ
2 ([0,T ];C2(Ω))

+ ‖u‖B([0,T ];C2+θ(Ω))

≤ C(T0)(‖f‖
C
αθ
2
,θ([0,T ]×Ω)

+
∑
k<α ‖uk‖Cθ+2(1− k

α
)(Ω)

+‖Dαg‖
C
αθ
2
,θ([0,T ]×∂Ω)

+ ‖g‖
C
αθ
2 ([0,T ];C2(∂Ω))

+ |g‖B([0,T ];C2+θ(∂Ω))).

Proof. It is analogous to the proof of Proposition 2.4.

3 Fully nonlinear problems
se2

Now we consider a system in the form (1.1), with the following assumptions:

(D1) T0 ∈ R+, Ω is an open, bounded subset in Rn lying on one side of its boundary ∂Ω, which is a
n−1−submanifold of Rn of class C2+θ, with θ ∈ (0, 1), F : [0, T0]×Ω×RN(n) → R, with N(n) = n2+n+1;

(D2) α ∈ (0, 2), θ 6= 2
α − 1;

(D3) ∀(t, x) ∈ [0, T0] × Ω F (t, x, ·) ∈ C1(RN(n)) and ∇pF (t, x, ·) is locally Lipschitz continuous in
RN(n), uniformly in bounded subsets of [0, T0]× Ω× RN(n);

(D4) ∀(x, p) ∈ Ω× RN(n)

‖F (·, x, p)‖
C
αθ
2 ([0,T0])

+ ‖∇vF (·, x, p)‖
C
αθ
2 ([0,T0])

≤ C(|p|);

with C(|p|) positive, nondecreasing in R+;

(D5) ∀(t, p) ∈ [0, T0]× RN(n)

‖F (t, ·, p)‖Cθ(Ω) + ‖∇vF (t, ·, p)‖Cθ(Ω) ≤ C(|p|);

(D6) ∀(t, x, p) ∈ [0, T0]×Ω×RN(n), ∀q ∈ Rn,
∑
|ρ|=2DpρF (t, x, p)qρ ≥ ν(t, x, p)|q|2, with ν continuous

and positive.

In order to solve (1.1), we apply Taylor’s formula: we have

F (t, x, p+ q) = F (t, x, p) +
∑
|ρ|≤2

DpρF (t, x, p)qρ + r(t, x, p, q), (3.1) eq3.1

with r(t, x, p, 0) = 0, ∇qr(t, x, p, 0) = 0.
From (D1)-(D6), we can write (1.1) in the form
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

Dαu(t, x) = F (t, x, (Dρ
xu0(x))|ρ|≤2) +

∑
|ρ|≤2DpρF (t, x, (Dσ

xu0(x))|σ|≤2)(Dρ
xu(t, x)−Dρ

xu0(x))

+r(t, x, (Dρ
xu0(x))|ρ|≤2, (D

ρ
xu(t, x)−Dρ

xu0(x))|ρ|≤2), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α.

(3.2) eq2.2

We begin with the following elementary lemma:

le3.1 Lemma 3.1. Suppose that (D1)-(D6) hold and let r be as in (3.1). Then:
(I) let M ∈ R+; then ∀ε > 0 there exists δ(M, ε) > 0 such that, if (t, x, p, q) ∈ [0, T0]×Ω×RN(n)×RN(n)

and |p| ≤M , |q| ≤ δ(M, ε), |∇qr(t, x, p, q)| ≤ ε;
(II) ∀M ∈ R+ there exists L(M) positive such that, if t, t′ ∈ [0, T0], x, x′ ∈ Ω, p, p′, q, q′ ∈ RN(n) and

max{|p|, |q|, |p′|, |q′|} ≤M ,

|∇qr(t, x, p, q)−∇qr(t′, x′, p′, q′)| ≤ L(M)(|t− t′|αθ2 + |x− x′|θ + |p− p′|+ |q − q′|).

Proof. It follows immediately from

∇qr(t, x, p, q) = ∇pF (t, x, p+ q)−∇pF (t, x, p).

Let R ∈ R+ and T ∈ (0, T0]. We set

X(R, T ) := {U ∈ C αθ
2 ([0, T ];C2(Ω)) ∩B([0, T ];C2+θ(Ω)) :

U(0) = u0,max{‖U − u0‖
C
αθ
2 ([0,T ];C2(Ω))

, ‖U − u0‖B([0,T ];C2+θ(Ω))} ≤ R}.
(3.3) eq3.3A

X(R, T ) is a complete metric space with the metric

d(U1, U2) := max{‖U1 − U2‖
C
αθ
2 ([0,T ];C2(Ω))

, ‖U1 − U2‖B([0,T ];C2+θ(Ω))}.

We want to prove the following

th3.2 Theorem 3.2. Suppose that (D1)-(D6) hold. Suppose, moreover, that:

(I) if k ∈ N0, k < α, uk ∈ Cθ+2(1− kα )(Ω),

(II) g ∈ C([0, T0];C2(∂Ω)) ∩B([0, T0];C2+θ(∂Ω)), Dαg exists and belongs to C
αθ
2 θ([0, T ]; ∂Ω);

(III) if k ∈ N0, k < α, γuk = Dk
t g(0);

(IV) γ[F (0, ·, (Dρ
xu0)|ρ|≤2)] = Dαg(0).

Then, for some R0 > 0, if R ≥ R0, there exists T (R) ∈ (0, T0] such that, if 0 < T ≤ T (R), (1.1) has
a unique solution in X(R, T ).

Proof. Let U ∈ X(R, T ). We consider the problem

Dαu(t, x) = F (t, x, (Dρ
xu0(x))|ρ|≤2) +

∑
|ρ|≤2DpρF (t, x, (Dσ

xu0(x))|σ|≤2)(Dρ
xu(t, x)−Dρ

xu0(x))

+r(t, x, (Dρ
xu0(x))|ρ|≤2, (D

ρ
xU(t, x)−Dρ

xu0(x))|ρ|≤2), t ∈ [0, T ], x ∈ Ω,

u(t, x′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t u(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α.

(3.4) eq3.3

13



Then, by Theorem 2.8, (3.4) has a unique solution u in C([0, T ];C2(Ω))∩B([0, T ];C2+θ(Ω)), with Dαu ∈
C
αθ
2 ,θ([0, T ] × Ω) and, by Proposition 2.2, u ∈ C αθ

2 ([0, T ];C2(Ω)). It is clear that U solves (1.1) if and
only if it is a fixed point of the mapping S(U) := u. If u = S(U) and v = S(V ), we have

Dα(u− v)(t, x) =
∑
|ρ|≤2DpρF (t, x, (Dσ

xu0(x))|σ|≤2)(Dρ
xu(t, x)−Dρ

xv(t, x))

+r(t, x, (Dρ
xu0(x))|ρ|≤2, (D

ρ
xU(t, x)−Dρ

xu0(x))|ρ|≤2)

−r(t, x, (Dρ
xu0(x))|ρ|≤2, (D

ρ
xV (t, x)−Dρ

xu0(x))|ρ|≤2), t ∈ [0, T ], x ∈ Ω,

(u− v)(t, x′) = 0, (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t (u− v)(0, x) = 0, x ∈ Ω, k ∈ N0, k < α.

We set
R(U)(t, x) := r(t, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xU(t, x)−Dρ

xu0(x))|ρ|≤2).

If U ∈ X(R, T ),

‖U − u0‖C([0,T ];C2(Ω) ≤ RT
αθ
2 .

We set
M0 := max

x∈Ω
|(Dσu0(x))|σ|≤2|.

Let η ∈ R+. Referring to Lemma 3.1, we take T such that RT
αθ
2 ≤ δ(M0, η). Then if, U, V ∈ X(R, T ),

‖R(U)−R(V )‖C([0,T ]×Ω) ≤ η‖U − V ‖C([0,T ];C2(Ω)).

Let t, s ∈ [0, T ], x ∈ Ω. Then

|R(U)(t, x)−R(V )(t, x)− (R(U)(s, x)−R(V )(s, x))|

= |
∫ 1

0
∇qR(t, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (t, x)−Dρ

xu0(x) + τ(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)

·(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)dτ

−(
∫ 1

0
∇qR(s, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (s, x)−Dρ

xu0(x) + τ(Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)

·(Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)dτ)|

≤ |
∫ 1

0
(∇qR(t, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (t, x)−Dρ

xu0(x) + τ(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)dτ

−
∫ 1

0
(∇qR(s, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (s, x)−Dρ

xu0(x) + τ(Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)dτ |

|(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)|

+
∫ 1

0
|∇qR(s, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (s, x)−Dρ

xu0(x) + τ(Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)|dτ

|(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)− (Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)|.

By Lemma 3.1 (II)

|
∫ 1

0
(∇qR(t, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (t, x)−Dρ

xu0(x) + τ(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)

−
∫ 1

0
(∇qR(s, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (s, x)−Dρ

xu0(x) + τ(Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)dτ |

≤ C(R)|t− s|αθ2 .
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Moreover,as Dρ
xU(0, x) = Dρ

xV (0, x),

|(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)| ≤ CT αθ
2 ‖U − V ‖

C
αθ
2 ([0,T ];C2(Ω))

.

Finally,∫ 1

0

|∇qR(s, x, (Dρ
xu0(x))|ρ|≤2, (D

ρ
xV (s, x)−Dρ

xu0(x) + τ(Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)|dτ ≤ η

if RT
αθ
2 ≤ δ(M0, η) and

|(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)− (Dρ
xU(s, x)−Dρ

xV (s, x))|ρ|≤2)|

≤ C0|t− s|
αθ
2 ‖U − V ‖

C
αθ
2 ([0,T ];C2(Ω))

So
‖R(U)−R(V )‖

C
αθ
2 ([0,T ];C(Ω)

≤ (C(R)T
αθ
2 + C0η)‖U − V ‖

C
αθ
2 ([0,T ];C2(Ω)

(3.5) eq3.4

if T ≤ T0(R, η) ≤ T0.
Let t ∈ [0, T ] and x, y ∈ Ω. Then, if U, V ∈ X(R, T ),

|R(U)(t, x)−R(V )(t, x)− (R(U)(t, y)−R(V )(t, y))|

= |
∫ 1

0
∇qR(t, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (t, x)−Dρ

xu0(x) + τ(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)

·(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)dτ

−(
∫ 1

0
∇qR(t, y, (Dρ

xu0(y))|ρ|≤2, (D
ρ
xV (t, y)−Dρ

xu0(y) + τ(Dρ
xU(t, y)−Dρ

xV (t, y))|ρ|≤2)

·(Dρ
xU(t, y)−Dρ

xV (t, y))|ρ|≤2)dτ)|

≤ |
∫ 1

0
(∇qR(t, x, (Dρ

xu0(x))|ρ|≤2, (D
ρ
xV (t, x)−Dρ

xu0(x) + τ(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)dτ

−
∫ 1

0
(∇qR(t, y, (Dρ

xu0(y))|ρ|≤2, (D
ρ
xV (t, y)−Dρ

xu0(y) + τ(Dρ
xU(t, y)−Dρ

xV (t, y))|ρ|≤2)dτ |

|(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)|dτ

+
∫ 1

0
|∇qR(t, y, (Dρ

xu0(y))|ρ|≤2, (D
ρ
xV (t, y)−Dρ

xu0(y) + τ(Dρ
xU(t, y)−Dρ

xV (t, y))|ρ|≤2)|dτ

|(Dρ
xU(t, x)−Dρ

xV (t, x))|ρ|≤2)− (Dρ
xU(t, y)−Dρ

xV (t, y))|ρ|≤2)|,

implying

‖R(U)−R(V )‖B([0,T ];Cθ(Ω)) ≤ η(‖U − V ‖
C
αθ
2 ([0,T ];C2(Ω)

+ ‖U − V ‖B([0,T ];C2+θ(Ω)), (3.6) eq3.5

if 0 < T ≤ T1(R, η) ≤ T0. By (3.5), (3.6) and Proposition 2.9, for any η and R positive there exists
T2(R, η) in (0, T0] such that, if 0 < T ≤ T2(R, η), and U1, U2 ∈ X(R, T ),

d(u1, u2) ≤ 1

2
d(U1, U2),

with uj solution of (3.4), taking U = Uj (j ∈ {1, 2}).
Let U0 be the solution of (3.4) with U = u0 (constant function). Then, if U ∈ X(R, T ), we have

d(u, u0) ≤ d(u, U0) + d(U0, u0) ≤ 1

2
d(U, u0) + d(U0, u0) ≤ R

2
+ d(U0, u0) ≤ R
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if
R ≥ 2max{‖U0 − u0‖

C
αθ
2 ([0,T0];C2(Ω))

, ‖U0 − u0‖B([0,T0];C2+θ(Ω))}.

With such choice of R, by the contraction mapping theorem, S is a contraction in X(R, T ) and the
conclusion follows.

We show a result of global uniqueness:

th3.3 Theorem 3.3. Suppose that (D1)-(D6) and (I)-(IV) in the statement of Theorem 3.2 hold. Let, for

j ∈ {1, 2}, vj ∈ C([0, T ];C2(Ω)) ∩ B([0, T ];C2+θ(Ω)), with Dαvj ∈ C
αθ
2 ,θ([0, T ] × Ω), be solutions of

(3.2). Then v1 ≡ v2.

Proof. We argue by contradiction, assuming that u 6= v. We set

τ = inf{t ∈ [0, T ] : v1(t) 6= v2(t)}.

Then 0 ≤ τ < T and v1(τ) = v2(τ). So we have, for j = 1, 2,

Dαvj(t, x) = F (t, x, (Dρ
xv1(τ, x))|ρ|≤2) +

∑
|ρ|≤2DpρF (t, x, (Dρ

xv1(τ, x))|ρ|≤2)(Dρ
xvj(t, x)−Dρ

xv1(τ, x))

+r(t, x, (Dρ
xv1(τ, x))|ρ|≤2, (D

ρ
xvj(t, x)−Dρ

xv1(τ, x))|ρ|≤2), t ∈ [0, T ], x ∈ Ω,

vj(t, x
′) = g(t, x′), (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t vj(0, x) = uk(x), x ∈ Ω, k ∈ N0, k < α,

implying 

Dα(v1 − v2)(t, x) =
∑
|ρ|≤2DpρF (t, x, (Dρ

xv1(τ, x))|ρ|≤2)(Dρ
xv1(t, x)−Dρ

xv2(t, x))

+r(t, x, (Dρ
xv1(τ, x))|ρ|≤2, (D

ρ
xv1(t, x)−Dρ

xV (τ, x))|ρ|≤2)

−r(t, x, (Dρ
xv1(τ, x))|ρ|≤2, (D

ρ
xv2(t, x)−Dρ

xv1(τ, x))|ρ|≤2), t ∈ [0, T ], x ∈ Ω,

v1(t, x′)− v2(t, x′) = 0, (t, x′) ∈ [0, T ]× ∂Ω,

Dk
t (v1 − v2)(0, x) = 0, x ∈ Ω, k ∈ N0, k < α.

Let 0 < δ ≤ T − τ . By Proposition 2.9, there exists C0 positive independent of δ such that

‖v1 − v2‖
C
αθ
2 ([0,τ+δ];C2(Ω))

+ ‖v1 − v2‖B([0,τ+δ];C2+θ(Ω))

≤ C0‖r(·, ·, (Dρ
xv1(τ, ·))|ρ|≤2, (D

ρ
xv1 −Dρ

xv1(τ, ·))|ρ|≤2)

−r(·, ·, (Dρ
xv1(τ, ·))|ρ|≤2, (D

ρ
xv2 −Dρ

xv1(τ, ·))|ρ|≤2)‖
C
αθ
2
,θ([0,τ+δ]×Ω)

= C0‖r(·, ·, (Dρ
xv1(τ, ·))|ρ|≤2, (D

ρ
xv1 −Dρ

xv1(τ, ·))|ρ|≤2)

−r(·, ·, (Dρ
xv1(τ, ·))|ρ|≤2, (D

ρ
xv2 −Dρ

xv1(τ, ·))|ρ|≤2)‖
C
αθ
2
,θ([τ,τ+δ]×Ω)

.

Let R ∈ R+ be such that, for j = 1, 2, max{‖vj‖
C
αθ
2 ([τ,T ];C2(Ω))

, ‖vj‖B([τ,T ];C2+θ(Ω))} ≤ R. Then, arguing

as in the proof of Theorem 3.2, we can see that, ∀ε > 0 there exists δ(R, ε) ∈ (0, T − τ ], such that, if
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0 < δ ≤ δ(R, ε),

‖r(·, ·, (Dρ
xv1(τ, ·))|ρ|≤2, (D

ρ
xv1 −Dρ

xv1(τ, ·))|ρ|≤2)

−r(·, ·, (Dρ
xv1(τ, ·))|ρ|≤2, (D

ρ
xv2 −Dρ

xv1(τ, ·))|ρ|≤2)‖
C
αθ
2
,θ([τ,τ+δ]×Ω)

≤ ε(‖v1 − v2‖
C
αθ
2 ([τ,τ+δ];C2(Ω))

+ ‖v1 − v2‖B([τ,τ+δ];C2+θ(Ω)))

= ε(‖v1 − v2‖
C
αθ
2 ([0,τ+δ];C2(Ω))

+ ‖v1 − v2‖B([0,τ+δ];C2+θ(Ω)))

We conclude that

‖v1 − v2‖
C
αθ
2 ([0,τ+δ];C2(Ω))

+ ‖v1 − v2‖B([0,τ+δ];C2+θ(Ω))

≤ C0ε(‖v1 − v2‖
C
αθ
2 ([0,τ+δ];C2(Ω))

+ ‖v1 − v2‖B([0,τ+δ];C2+θ(Ω))),

implying (if C0ε < 1) v1|[0,τ+δ] = v2|[0,τ+δ], in contradiction with the definition of τ .

re3.4A Remark 3.4. Theorems 3.2 and 3.3 hold if (D1)-(D6) are relaxed in the following way: the domain of
F is [0, T0]× Ω×O with O open subset in RN(n) containing (Dρ

xu0(x))|ρ|≤2; moreover, the estimates of

F and its derivatives in (D3)-(D5) are uniform in any compact subset of [0, T0]× Ω×O.
Observe that, if U ∈ X(R, T ) (see (3.3)) and |ρ| ≤ 2,

|Dρ
xU(t, x)−Dρ

xu0(x)| ≤ RT αθ
2 , ∀(t, x) ∈ [0, T ]× Ω.

re3.4 Remark 3.5. Theorems 3.2 and 3.3 can be extended to the case that

F (t, x, (pσ)|σ|≤2) =
∑
|σ|=2

aσ(t, x, (pρ)|ρ|≤1)pσ + b(t, x, (pρ)|ρ|≤1),

with
(a) if |σ| = 2, aσ, b : [0, T0] × Ω × O → C, with O open subset of Cn+1 containing (Dρu0(x))|ρ|≤1

∀x ∈ Ω;
(b) the derivatives of F appearing in (D3)-(D5) are intended by identifing Cn+1 with R2(n+1).
(c)

∑
|σ|=2 aσ(t, x, (pρ)|ρ|≤1)qσ 6= 0 ∀(t, x, (pρ)|ρ|≤1) ∈ [0, T0]× Ω×O, ∀q ∈ Rn \ {0};

(d) |Arg(
∑
|σ|=2 aσ(t, x, (pρ)|ρ|≤1)qσ)| < (1− α

2 )π ∀(t, x, (pρ)|ρ|≤1) ∈ [0, T0]× Ω×O, ∀q ∈ Rn \ {0}.
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MeKl1 [8] R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Physica A 278
(2000), 109-125.

Na1 [9] T. Namba, ”On existence and uniqueness of viscosity solutions for second order nonlinear PDEs with
Caputo time fractional derivatives”, Nonlinear Differ. Equ. Appli. 25:23 (2018), 39 pp..

Po1 [10] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering vol. 198
(1999), Academic Press.

Za1 [11] R. Zacher, ”Global strong solvability for a quasilinear subdiffusion problem”, J. Evol. Eq. vol. 12
(2012), 813-831.

18


	Copertina_postprint_IRIS_UNIBO (2)
	Fullynonlineardirichletsecondnew.pdf

