We consider sequences of elliptic and parabolic operators in divergence form and depending on a family of vector fields. We show compactness results with respect to G-convergence, or H-convergence, by means of the compensated compactness theory, in a setting in which the existence of affine functions is not always guaranteed, due to the nature of the family of vector fields.

Maione A., Paronetto F., Vecchi E. (2023). G-convergence of elliptic and parabolic operators depending on vector fields. ESAIM. COCV, 29, 1-21 [10.1051/cocv/2022084].

G-convergence of elliptic and parabolic operators depending on vector fields

Vecchi E.
2023

Abstract

We consider sequences of elliptic and parabolic operators in divergence form and depending on a family of vector fields. We show compactness results with respect to G-convergence, or H-convergence, by means of the compensated compactness theory, in a setting in which the existence of affine functions is not always guaranteed, due to the nature of the family of vector fields.
2023
Maione A., Paronetto F., Vecchi E. (2023). G-convergence of elliptic and parabolic operators depending on vector fields. ESAIM. COCV, 29, 1-21 [10.1051/cocv/2022084].
Maione A.; Paronetto F.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
cocv220087.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 549.39 kB
Formato Adobe PDF
549.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/913884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact