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G-CONVERGENCE OF ELLIPTIC AND PARABOLIC OPERATORS
DEPENDING ON VECTOR FIELDS*

A. MAIONE!*®, F. PARONETTO? AND E. VECcHT?

Abstract. We consider sequences of elliptic and parabolic operators in divergence form and depend-
ing on a family of vector fields. We show compactness results with respect to G-convergence, or
H-convergence, by means of the compensated compactness theory, in a setting in which the existence
of affine functions is not always guaranteed, due to the nature of the family of vector fields.
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1. INTRODUCTION

The asymptotic behaviour, as h — oo, from the point of view of G-convergence of a sequence of equations
like

Ehu: f (].1)

in bounded domains €2 of R™ has been widely studied, in particular when F}, is an elliptic or parabolic operator
in divergence form, i.e.,

En = —div(ap(z,V)) or Ep =20 —div(ap(z,t,V)),

where V denotes the Euclidean gradient, z € Q and ¢t € (0,7"), with T' > 0.

G-convergence was introduced for linear elliptic operators Ej (for symmetric matrices a; with positive
eigenvalues) by Spagnolo in a series of papers at the end of ’60s (see [26-28]) and studied later by the same
author in many other papers. Surely worthy to be recalled are [6], in the case of homogenization, where for the
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first time an explicit expression of the limit operator is given, [3] in which also a comparison between elliptic
and parabolic G-convergence is made, and [25] among the first papers about linear parabolic operators.

Regarding linear operators Ej with non-symmetric matrices ay, or Ej nonlinear, this study involves a further
difficulty: the lack of uniqueness of a representative for the limit operator, see e.g. [24].

This problem is bypassed in the ’70s by Murat and Tartar, who extended the notion of G-convergence,
and call it H-convergence, to general linear and monotone elliptic operators Ej, see e.g. [21, 30]. We want
to give a brief, and certainly not exhaustive, account regarding the case of nonlinear operators: we refer to
[2] for elliptic operators and to [29] for parabolic ones. Finally, we mention [33], where linear operator also of
degree greater than two are considered, and the book [22] where nonlinear both elliptic and parabolic operators,
homogenization and random operators are presented.

The aim of this paper is to extend the classical results for sequences of monotone operators to the more general
setting of operators modeled on vector fields (i.e. replacing the Euclidean gradient V in (1.1) with a family of
vector fields X), continuing along the path traced in the recent papers [16-18]. Before entering into the details,
we want to recall that the literature concerning homogenization, G-convergence and integral representation of
abstract functionals depending on vector fields is pretty vast, ranging from more rigid structures like Carnot
groups, see e.g. [1, 10-12, 16, 19] and the references therein, up to the more general setting considered in
[7, 8,17, 18].

The setting we will take into account embraces the huge family of vector fields satisfying the Hormander
condition. We stress however that our results still apply to families of vector fields not satisfying the Hormander
condition, provided that the following hypotheses are fulfilled: we consider a bounded domain € of R™ and a
family of m < n vector fields X = (X7,..., X,,), defined and Lipschitz continuous on an open neighborhood €
of Q, such that the following conditions hold

(H1) let d: R™ x R™ — [0, 00] be the so-called Carnot-Carathéodory distance function induced by X, see e.g.
[14]. Then, d(z,y) < oo for any z,y € Qo, so that d is a standard distance in Qq, and d is continuous with
respect to the usual topology of R";

(H2) for any compact set K C Qg there exist rx, Cx > 0, depending on K, such that

|Ba(x,2r)| < Ck|Ba(z,r)|

for any € K and r < rx. Bg(z,r) denotes the open metric ball with respect to d, that is, Byq(z,r) :=
{ye D« di.y) <r);

(H3) there exist geometric constants ¢, C' > 0 such that for every ball B = By(Z,r) with c¢B := By(T, cr) C Qo,
for every u € Lip(cB) and for every z € B

U " d(z,y) _
o) = 1 /B (y)dy'sc /cB\X Ol s

(LIC) the n-dimensional vectors Xi(z),..., X,,(x) are linearly independent for any = € Q\ Zx, where Zx is a
Lebesgue measure zero subset of (2.

As already mentioned, the main goal of the paper is to extend to the monotone, and possibly parabolic, case
the result contained in [18], where the authors dealt only with the elliptic and linear case. We recall that G-
convergence when the equations (1.1) represent the Euler-Lagrange equations of a family of functionals, may be
connected with T'-convergence, see e.g. [4, 5]. This is the approach used in the linear elliptic case in [18] and it
cannot be followed in the case of parabolic problems driven by monotone operators, because the corresponding
PDEs cannot be seen as Euler-Lagrange equations of appropriate functionals. To mark once more the difference
with respect to [18] and to better stress the novelty of the paper, let us review the classical approach introduced
by De Giorgi and Spagnolo [6, 25-28], which is based on the compensated compactness and the existence of
affine functions.
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Compensated compactness: for any pair (Mp)n, (Vop)n satisfying

My, — M and Vv, — Vv weakly in L*(;R™),
divMy, =g for a fived data g € L*(Q),

it holds that
(My,, Vop)re = (M,Vo)ga  in D'(Q).

Roughly speaking, the compensated compactness theory ensures that the Euclidean inner product remains
continuous with respect to weak convergence, even thought neither sequence is assumed to be relatively compact
in L2(£; R™). Here the lack of compactness is compensated by the boundedness of some combinations of partial
derivatives. Murat and Tartar in [21, 30] extended the compensated compactness with a result involving the
notion of curl (notice that curlVv = 0). This theory is known as div-curl lemma and its extension to the setting
of Sobolev spaces depending on vector fields is a pretty delicate task, mainly because a proper notion of intrinsic
curl, curlx, ensuring that curlx Xv = 0, is not always available. We recall here that a possible notion of curl in
the setting of Carnot groups has been given in [11], using the intrinsic complex of differential forms of Rumin.

In Theorem 3.1 and Theorem 4.2, we show that in fact the classical technique due to Spagnolo is sufficient
to get compensated compactness even without a proper generalization of the div-curl lemma, and in particular
of the curl.

The compensated compactness is usually used to prove the closure of the class of operators in divergence
form, meaning that if

Ap = —div(ap(z,V)) G-converges to A,
then the limit operator A is in divergence form, i.e.,
A = —div(a(z, V)),

for some function a. In the Euclidean setting, the definition of a goes through the existence of suitable affine
functions.

Ezxistence of affine functions: for any fized £ € R", there exists a unique smooth enough function u (at
least C?) such that Vu = €.

In the purely Euclidean framework, affine functions exist and can be represented by the Euclidean scalar
product of the fixed vector £ with x € R™. Another example in which one can prove the existence of such
functions is provided by the Heisenberg group. On the other hand, if we consider the case of the Grushin plane,
we easily get an example of a family of vector fields satisfying our assumptions but for which affine functions
may not exist. To be more precise, let n = 2 and consider the Grushin gradient X = (X, X5)

X(2) = (0z,70,), x€Qx:={(v,y)€R?: z#£0}.

Then, for any fixed £ = (&1, &) € R? with & # 0, one can easily show that there exists no function u € C?(Qx)
such that Xu(z) = ¢&.

Despite the possible non-existence of X-affine functions, we are however able to prove G-compactness by
using the classical Euclidean affine functions and exploiting either the linear independence condition (LIC) on
the X-gradient and the algebraic structure of the family X. See the proofs of Theorem 3.3 and Theorem 4.4
for the details. We finally stress that our proof drastically simplifies the one in [18] for merely linear elliptic
operators.
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The paper is organized as follows: in Section 2, we provide the functional setting of Sobolev spaces depending
on vector fields and we state the main properties of the classes of monotone operators we are interested in.
In Section 3, we state and prove the main result in the elliptic framework and, in Section 4, in the parabolic
setting. Finally, in Lemma 4.5, we show that the parabolic limit and the elliptic one coincide when the parabolic
sequence of monotone operators is independent of time.

2. NOTATIONS AND PRELIMINARIES

2.1. Functional setting

Let X(x) := (X1(2),...,Xm(x)) be a given family of first order linear differential operators with Lipschitz
coefficients on a bounded domain € of R"™, that is,

Xj(l‘): Zcﬂ(.’lj)al j:l,...7m
i=1

with ¢j;(z) € Lip(Q) for j=1,...,m,i=1,...,n.
In the following, we will refer to X as X-gradient. As usual, we identify each X; with the vector field

(¢ji(z),...,cjn(x)) € Lip(Q; R™)
and we call

the coefficient matriz of the X -gradient.

Definition 2.1. For any u € L'() we define Xu as an element of D'(Q; R™) as follows
(Xu, P)yprxp = ((Xau, Y1) xps - -+, (X Y ) D/ xD)

-~ [ (Zaxcuwl)w..,zai(cmi wm) da
2 \i=1 i=1

for any ¢ = (¢¥1,...,¢%m) € D(Q;R™) = CX(Q; R™).

(2.1)

If we set XTop == (X{ 41, ..., X} ¥m), with
Xjp:= *Zn:ai(cji p) = — (div(X;) + X;) ¢
i=1
for any o € C°(Q) and j =1,...,m, then (2.1) becomes
(Xu, Y)yp xp = / uXTepde  for any i) € C(Q;R™).

Q

Remark 2.2. Notice that if X =V = (d4,...,0,), then

XjTSO: —0;p foranyj=1,...,n.
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Let a: Q x R™ — R™ as assume that a(-, X) is smooth enough in Q. The operator X-divergence of a(-, X)
is defined by

divy(a(z, X)) := Y X[ (a(z,X;)), z€Q

ji=1

and its domain is the set W)l(%(ﬂ) defined as follows.

Definition 2.3. We define the anisotropic Sobolev spaces in the sense of Folland and Stein [9] as
WP(Q) := {u € LP(Q) : Xju € LP(Q) for j =1,...,m}.

These spaces, endowed with the norm

1
ol = ([ o [ 1xuras)”

are Banach spaces for any 1 < p < oo, reflexive if 1 < p < +o00.
Moreover, we denote W;(%(Q) the closure of CL() N WP (Q) in WP (Q).

Since vector fields X; have Lipschitz continuous coefficients, then, by definition,
WhP(Q) c WP (Q) Vp e [l, o] (2.2)
and, for any u € WhP(Q),
Xu(z) = C(x) Du(x) for a.e.z €.

Here W1P(Q) denotes the classical Sobolev space, or, equivalently, the space W)l{’p (Q) associated to the family
X = (01,...,0,). Inclusion (2.2) can be strict, in particular when the number of vector fields is strictly less
than the dimension of the space, and turns out to be continuous. By the Lipschitz regularity assumption, the
validity of the classical result ‘H = W’ of Meyers and Serrin [20] is still guaranteed as proved, independently,
in [13] and [15].

As a consequence of conditions (H1) - (H3), it has been proved in [14, 18] the validity of a Rellich-type
theorem and a Poincaré inequality in W% (Q).

Theorem 2.4 ([14], Thm. 3.4). Let 1 < p < oo and let X satisfy conditions (H1), (H2) and (H3). Then,
W;(%(Q) compactly embeds in LP(Q).

Proposition 2.5 ([18], Prop. 2.16). Under the hypotheses of the previous theorem and also assuming that € is
connected, there exists a positive constant c, o, depending only on p and Q, such that

.0 / |ulP do < / | Xu|Pdz  for any u € W;(%(Q)
Q Q

and

P
ol = ( [ IxoPac)

is a norm in W;(%(Q) equivalent to || - ||W1’P(Q)-
> X
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2.2. Space-time setting
Let (p,p’) be a Holder’s conjugate pair, with p > 2. We denote

Vi=Wyh(Q),  H:=ILXQ), V=W (Q),
where V' is the dual space of V, and we identify the dual space of H, H’, with H itself, in such a way that
VcHcCV' (2.3)
where the embeddings are dense and continuous. In a similar way, we define
V:=LP0,T;V),  H:=L*0,T:H), V :=L"(0,T;V')
and, by (2.3), we have
VcHc)

with continuous and dense embeddings. We endow V and H, respectively, with the following norms:

T » T 3
lully = </0 IIU(t)II’{/dt) v lulle= (/0 IU(t)II%dt> ,

and V' with the natural norm

Y
lully = ( / ||u<t>||”/dt> .

Definition 2.6. Given two Banach spaces Y7, Ys, we say that v € L1(0,T;Y5) is the generalized derivative of
u e LY0,T;Yy) if

T T
/ o(B)p(t) dt = — / w(t)g (1) dt
0 0

for every ¢ € C((0,T);R).
Notice that the integral in the previous definition is the Bochner integral and that fOT v(t)p(t) dt,

fOTu(t)cp’(t) dt € Y1 NYas (see, for instance, [31], Chapt. 23 or [23], Chap. 3).

The natural space of solutions to parabolic PDEs is the Banach space
W:={ueV|u eV},
endowed with the norm
lullw = llully + lu'llv -
v’ is to be intended as the generalized derivative of u (see Def. 2.6).

In the following proposition we recall some results regarding the space W, see, e.g., Proposition 1.2, Corollary
1.1 and Proposition 1.3 in [23].
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Proposition 2.7. The space W continuously embeds in C°([0,T]; H) and, for every u,v € W and for every
t,s € [0,T], the following generalized integration by parts formula holds:

(u(®), v(®)) = (u(s), v(s))
= /:(U(T), v(7))vrxy dr + /:(v'(T), u(r))vrxv dr.
Moreover, the space W compactly embeds in LP(0,T; H).
Now consider the operators

AV sV, AV =V
and

P:W—=V, Pu=u+ Au.
Definition 2.8. Let g € V'. We define u € V' a solution to the problem

Au=g inV’ (2.4)
if
(Au,v)yrxv = (g,v)y/xv for every v € V.

Moreover, if f € V' and ¢ € H, we define u € W a solution to the problem

v+ Au=f in)
u(0) = ¢ in H

if
(W (t),v)vixy + (Au(t), v)vixv = (f(t), v)vixv

for a.e. t € (0,T), for every v € V and if u(0) = ¢ in H.
We conclude this part by recalling a result useful for the sequel.

Lemma 2.9 ([2], Lem. 7.8). Let U be a bounded open set in R¥, ¥1,...9,, be non-negative numbers such that

Y1+ + U < 1, and assume that (r15)n, .., (Pmp)n and (sp)n are sequences in LY(U) such that, for any i
rin >0 and |sp| < rflh C -rz{"h a.e. in U for every h € N.
Moreover, assume the existence of r1,...,7m,s € LY(U) such that

rin—m and s, —s inD'(U)
as h — oo, for anyi=1,...m. Then,

Is|] <rPv. ool geinU.
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2.3. Position of the problems
Definition 2.10. Let o < 3 be positive constants. We define Mg (o,7)(, B,p) the class of Carathéodory
functions a : Q x (0,7) x R™ — R™ satisfying
(1) a(z,t,0) =0;
(”) (a(sc, t7 5) - a(x, t? 77)7 5 - n)Rm Z Oélé- - 77|pj2
(#11) |a(z,t,€) —alz, t,n)| < BL+ [+ [n[F] 7 [ —nl
for a.e. (z,t) € Q x (0,T) for every &, n € R™.

We also denote by Mq(a, 3, p) the subclass of Mg, o,1(a, 3, p) of functions a independent of ¢.
Remark 2.11. If a € Mgy (o,1)(c, 5,p), then

(iid)" la(w,t, &) — a(z, t,n)| < B'[L+ [P + n|P] 7= |§ —nl=T
for a.e. (z,t) € Q x (0,T) for every £, € R™ and for some g’ > 3.

Indeed, by (i), (i1), (i74) and Cauchy-Schwarz inequality, we get
pP—2 1 1
|a($,t,£) - a’(l'vta 77)‘ S B [1 + |£‘p + |77‘p] pa (a(x,t,f) - a‘(l’vtvﬂ)ug - 77)11:]{’"
1 p=2 1 1
Sa P B+ + 0Pl 7 Ja(e,t,8) — ala, t,n)[7 | —nl7,
i.e.

p—

laz, £, €) — alw, t,n)| 7 < a"FB[L+ € + [nP)F |& —nlF .

1
The thesis follows choosing 5" > (oz_1 ﬂp) p-1,

Definition 2.12. We denote MQX(O’T) (o, B/, p) and Ma(a, B, p), respectively, the class of Carathéodory func-
tions @ : 2 x (0,T) x R™ — R™ satistying (4), (¢4) and (i4¢)’ and its subclass of functions independent of ¢. By
Remark 2.11,

Mayo,1)(c, B,p) € Max o) (e, B,p).
Remark 2.13. Let a € Mgy o,1)(a, 3,p) and define the operators
A):V = V' Alt)u:=divx(a(z,t, Xu)), te0,T]
and
AV =V, Au:=divy(a(z,t, Xu)).

Notice that Au(t) = A(t)u(t) for v € V and that [0,7] > t — (A(t)u,v)y xv is measurable for every u,v € V.

Theorem 2.14 ([31], Thm. 26.A). Let a € Mq(w, B,p) (or, equivalently, a € Mq(a, 8',p)) and define Au :=
divx (a(z, Xu(x))). Then, for every g € V' there exists a unique solution u € V' to problem (2.4). Moreover

1 =L
ully <a”7=T|glly" .
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Theorem 2.15 ([31], Thm. 30.A). Let a € Mqyo,r)(c, 3,p) (or, equivalently, a € MQX(O’T)(CY,B/,p)) and
define Au := divy (a(x,t, Xu(x))). Then, for every f € V' and for every ¢ € H there exists a unique solution
u € W to problem (2.5). Moreover, for a € Mqyxo,r)(c, B,p), there exists a positive constant ¢, depending only
on o, B and p, such that

= 2 p-2 L 2
lellw < eI + (U 17157 + el )" (U157 + ellz)] -
Given (ap)n C Ma(a, 8,p) and a € Mq(d/, 8, p), for some positive constants o < 3, o’ < ', denote

Ap V= V' Apu = divy(ap(z, Xu(z))),

2.6
A:V =V Au:=divy(a(z, Xu(z))). (2:6)
Fix g € V' and let up,u € V be, respectively, the unique solutions to
Apu=g inV’, (En)
Au=g inV'. (E)

Definition 2.16. We say that A, G-converges to A if for every g € V'

up, — u  strongly in LP(Q2),
an(-, Xup) — a(-, Xu) weakly in L” (Q; R™).

In a similar way, let (an)n C Maxo,r)(a,B,p) and a € Maqyo,r)(a’, 8, p), for some positive constants
a<pf,a <p and denote

Ap(t): V = V' Ap(t)u = divx (an(z,t, Xu(z))),
Alt):V = V' Alt)u = divx(a(z,t, Xu(x))),
Ap 2V =V Apu = divx(ap(z, t, Xu(z,t))),
)

2.7
AV =V, Au:=divx(a(z,t, Xu(z,t))), 27)
P W=V, Pu:i=u + Ay,
PW—=V, Pu=u+ Au.
Fix f € V' and ¢ € H, and let up,u € W be, respectively, the unique solutions to

Pru = in )’

= o m Y ()
u0)=¢ inH
Pu=f in )’

Sy (P)
u(0)=¢ inH

Definition 2.17. We say that P G-converges to P if for every f € V' and ¢ € H

up, — u  strongly in LP(0,T; H),
an(-, - Xup) = a(-,-, Xu) weakly in L” (0,T; L* ({; R™)).
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We conclude this section with a result that will be useful in the proof of Lemma 4.5. The proof is left to the
reader.

Remark 2.18. Consider the sequence of problems (E},) and denote by up,(g) their solutions. Suppose that Ay,
G-converges to A. Then, it holds that

un(gn) — u(g) strongly in LP(Q2),
an(, Xun(gn)) — a(-, Xu(g)) weakly in L¥ (;R™),
provided that (gn)n C V' strongly converges to g in V.
The analogous holds for problems (P,) where one considers two sequences of data (f5)n and (¢r)n, provided

that f, — f strongly in V' and ¢}, — ¢ strongly in H.

3. ELLiPTIC G-CONVERGENCE

In this section we state and prove a G-compactness result in the elliptic case, namely Theorem 3.3. In all this
section we always assume that {2 is a bounded domain of R", that 2 < p < oo and that X satisfies conditions
(H1), (H2), (H3) and (LIC), given in the Introduction.

Theorem 3.1. Let vy,,v €V and M, M € Lp/(Q; R™) satisfy, respectively,

v, = v weakly in' V|
M, — M weakly in L” (; R™) (3.1)

and assume that
divx Mp =g inV’' for somegeV'. (3.2)
Then,
(M, Xvp)rm — (M, Xv)gm in D'(Q).

Proof. Fix ¢ € C2°(Q) and consider the quantities (divx My, o)y xv and (divx Mp, vpe)v xv. By (3.1) and
(3.2), we get

divkM =g inD'(Q). (3.3)
Moreover,
/Q(Mh,th)ngodx = (divXMh,vhgo>V,XV — /Q(Mh,Xgo)Rmvh dz.
Consider the right hand side terms. By assumptions we have that
hEIfoo (divx Ma, vnp) oy = (9, V0) oy

and, since (vp,)p, strongly converges to v in LP(2) (see Thm. 2.4), we get

lim (Mh,Xgo)Rmvhdx:/(M,X(p)Rmvdx,
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that is,
hgrfw Q(Mh,th)ngadx: <g,vg0>v,xv f/Q(M,Xga)Rmvdx.
Then, the thesis follows by (3.3). O

Lemma 3.2. Fiz g € V' and denote by up(g) the solution to problem (Ey). Then, there exist two continuous
operators

B:V =5V,
M:V'— LF(Q;R™)
such that, up to subsequences, the following convergences hold

up(g) = B(g) strongly in LP(Q),
an(-, Xun(g)) = M(g) weakly in L (Q; R™).

Moreover, B is invertible and M satisfies

divxM(g)=g inV' foreverygeV’, (3.4)

p—

IM(f) = M(g)| < B'(1+ (M(f), XB(f)rm + (M(g), XB(g))rn) 71
x | XB(f) — XB(g)|7

for every f,g € V', with ' = (5047% max{l,a’ppi})ﬁ.

Proof. By Theorem 2.14, the sequence (u(g))n is bounded in V' and then, up to a subsequence, (u(g)), weakly
converges in V. By Theorem 2.4, and up to a further subsequence, it strongly converges in LP((2).
Fix g € V'’ and define

B(g) := lim wup(g).

h—oc0
Since, by Definition 2.10 (iii),

lan (2, Xun(9)] < B[1+ [ Xun(9)P)7 | Xun(g)] < B[+ [ Xun(g)]?)

a.e. x € ), then
lan (@, Xun(9))| 7T dz < B7°7|Q| + 75 / | Xun(g)P da,
Q Q

that is, the sequence (ap (-, Xun(g)))n turns out to be bounded in LPI(Q; R™). Therefore, for every g € V' and
up to a subsequence, there exists a limit M(g) € L? (Q; R™) such that (an(-, Xup(g)))r weakly converges to
M(g) in LP (2;R™). Moreover, since

(9. @iy = (Anun(g), vy = /Q (an(z, Xun(g)), X9) g
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for any ¢ € C2°(2) by hypotheses, then

/Q (M(g>7XQ0)Rm dr = (g, p)vixv ,

that is, (3.4) holds.
Fix f,g € V'. By Definition 2.10, it holds that

lan (2, Xun(f)) — an(z, Xun(9))] < B+ | Xun ()P + | Xun(g)P) 7
x [ Xup(f) — Xun(g)|
< ,Bofl/p(l + oﬁl(ah(x,th(f)),th(f))Rm

P

+a Yan(w, Xun(9)), Xun(g))mm) 7
x (an(a, Xup(f)) — an(e, Xun(9)), Xun(f) — Xun(9)) i

a.e. z € ) and, letting h — oo, we get

IM(f) = M(g)| < Ba™ P max{1,a™"% }(1+ (M(f), XB(f))rn

+(M(g), XB(9))rm) *

x (M(f) — M(g), XB(f) — XB(g)) g

by means of Lemma 2.9 and Theorem 3.1. Thus, (3.5) follows by Cauchy-Schwarz inequality.

We conclude by showing the invertibility of B. Fix f,g € V' and assume that B(f) = B(g). By (3.5), it holds
that M(f) = M(g) and, by (3.4), we conclude that f = g. Moreover, B(V') is dense in V. In fact, if g, € V’
satisfies

(90, B(9))v'xv =0 for every g € V'

then, in particular, (go, B(¢o))v'xv = 0 and, by Definition 2.10 (ii) and the lower semicontinuity of the norm
|- llv, we get

0= (90, B(go))v'xv = (go,hliﬂgouh(go»\//xv

= lim (Apun(9o),un(go))v/xv

h—+oco

> Tim P _ P >0.
= liminf aflun(go) [y = | B(go)lly, = 0

The conclusion follows by the injectivity of B and since B(0) = 0.
The operator B~1 : B(V') — V' can be uniquely extended to an operator B~ : V/ — V by the density of
B(V')in V. O

Theorem 3.3. Consider a sequence (ap)n, C Maq(a, 8,p) and the related sequence of elliptic operators (Ap)n,
defined in (2.6).
Then, there exists a € /\;lg(cuﬂ’,p), with B8 = (oz_lﬂp)”f1 max{1, ofg%?}, such that, up to subsequences,

A, G-converges to A,
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where A : V — V' is the operator in X -divergence form associated to a and defined by
A(u) =divx (a(-, Xu)) foranyueV.

Proof. Let us divide the proof of Theorem 3.3 in three steps.

Step 1. Construction of the limit operator and useful estimates.
Let B and M be the operators introduced in Lemma 3.2 and define

A: V-V, A=B"1
By (3.4),
divx M (g) = g = A(B(g)) for every g€ V'.

Moreover, define N : V — L¥ ((; R"™) by N := M o A.
As a consequence of Theorem 3.1 and Lemma 3.2, it easy to show that N satisfies

a|Xv — Xw|P < (N(v) = N(w), Xv - Xw),, (3.6)

XV

IN@) = N(w)] < 8'(1+ (N(©), Xo)re + (N(w), Xw)ge) 7 [Xo — Xw|7T (3.7)

for every v,w € V. (To get an idea of how to prove (3.6) and (3.7), we remind the interested reader to the
equivalent estimates in the parabolic case, namely (4.1) and (4.2), provided in the proof of Theorem 4.4.)

Step 2. Let us show that A is an operator in X-divergence form, by providing the existence of a function
a(z, ) : R™ — R™ satisfying

N(u) =a(-,Xu) foranyu eV ae x €. (3.8)
Fix an open set w such that @ C €, let ¢ € C}(2) be such that ¢ =1 in w and, for any ¢ € R", define
we(x) = (§,$)Rn¢(l‘) for any z € w,
where (§,2)rn = &121 + ... + &2y Then
Xwe(z) =C(x)¢ for any x € w, (3.9)

where C(z) is the coefficient matrix of the X-gradient (see Sect. 2).
Notice that, if £,£ € R™ are such that £ — £ € Ker C(z), then

Nuwe(z) = Nwg(z) for any z € w. (3.10)
Indeed, by (3.7), it holds that
=2 1
|[Nwe(z) — Nwg(2)] < B'(1+ (Nwe, Xwe)rm + (Nwé,Xwé)Rm) P Xwe — Xwg|7T (3.11)

and, by (3.9), the right hand side, and then the left hand side, is zero.
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Fix £ € R™. By condition (LIC), there exists a Lebesgue measure zero subset of , Zx, such that
(X1(x),..., Xpn(x)) are linearly independent for any x € w\ Zx. Denote by n = n(x) the vector C(x)§ € R™
and define

a(z,n(x)) = Nwe(xz) forany z €w\ Zx.

By (3.10), a is well-defined and, by condition (LIC), we can define a(x,-) in the whole space R™.
Consider now a sequence of open sets w; C ), j € N, such that

wj CQ, wj Cwjtq forevery j € Nand UjZ; w; =12,
and consider a sequence (¢;); C C§() satisfying
$; =1 onw; foreveryjc N.
For any fixed £ € R"™, we define the map
wé(x) = (f,x)Rngbj(a:) for any x € w; and j € N.

Note that the monotonicity condition on the sets (w;); guarantees that the quantity wé () is definitively constant

with respect to j for every x € Q. It follows that the limit lim; oo wf(x), and then lim;; oo ng (z), both
exist. We can then define the function a(z,-) : R™ — R™ by

a(z,n(z)) ;== lim Nuw!

Jj—r+oo 5(1‘)
for any 2 € Q\ Zx, where C(z)§ = n(x). .
Let &,& € R™ satisfy £ — ¢ € Ker C(x), i.e. C(x)€ = C(x)&. Then, by (3.11),

J
ng

(x) = Nwé(z) for any x € Q\ Zx,
and a is, therefore, well defined.
Finally, note that, for any fixed x € Q\ Zx there exists £ € R™ such that

Then, condition (3.8) readily follows by the definition of a.

Step 3. We conclude by showing that a € Mq/(a, 3, p).

By construction, a(z,-) : R™ — R™ turns out to be continuous for a.e. z €  and a(-,n) : 2 — R™ turns
out to be measurable for every n € R™. Then, a : Q x R™ — R™ is a Carathéodory function. Moreover, by
(3.6), a satisfies condition (ii) of Definition 2.10 and, by (3.7), condition (4i7)" of Remark 2.11.

Let us prove that a(-,0) = 0. Let wy, be the solution to (Ep), with g = 0. Since, by Definition 2.10 (i),
ap(x,0) = 0 a.e. in Q then, by the uniqueness of the solution to problem (E}), we get that wy, = 0 a.e. in  for
every h € N and, by Lemma 3.2 and the definition of M, we get (up to subsequences)

M(@O)= lm ap(z,Xwy)= lim 0=0,

h—+o0 h—+oc0

that is, N(0) = 0.
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Fix £ =0 € R". Then, Nwé—(m) = 0 in w; for any j € N and, by the definition of a, we finally get a(z,0) =0
a.e. x € (L O]

4. PARABOLIC G-CONVERGENCE

The last section of this paper is devoted to the study of the G-convergence of sequences of parabolic operators
depending on vector fields. As done in the elliptic case (Sect. 3), we provide in Theorem 4.4 a G-compactness
theorem, Theorem 4.4, which follows from preliminary results, Theorem 4.1, Theorem 4.2 and Lemma 4.3. We
conclude this section by showing in Lemma 4.5 that, whenever the sequence of Carathéodory functions (ap ),
that defines the monotone parabolic operators (9; + divx (ap(z, X)))n, does not depend on ¢ for every h € N
then the parabolic G-limit is the operator

O + divy (a(z, X)),

where divx (a(z, X)) is the elliptic G-limit of the sequence of operators (divx (ap(x, X)))n. In all this section
we always assume that Q is a bounded domain of R", that 2 < p < co and that X satisfies conditions (H1),
(H2), (H3) and (LIC), given in the Introduction.

The first result of this section, which is proved in Lemma 3 of [32], shows that the sequence of solutions (up,)
to problems (P), that are naturally compact in L?(0,T; H) as stated in Proposition 2.7, converges to its limit
in the space C°([0,T); H).

Theorem 4.1 ([32], Lem. 3). Let up € W be the solution to problem (Py) and let u be the limit, up to
subsequences, of (up)p in LP(0,T; H). Then,

up, —u in C°([0,T]; H) ash — cc.
Theorem 4.2. Let vy, v, wp, w € W satisfy

vp = v weakly in YV, vy, = v weakly in V',

wy, —w  weakly in YV, wy, —w' weakly in V'

and assume that (Mp)n, (Np)n C LP' (0, T; LP (€ R™)) weakly converge to M and to N in L¥' (0, T; L' (Q; R™)),
respectively. Suppose that

’U;L—‘r-diVXMh:f z‘nV’,
w}b+diVX Np=g in)V

for some f,g € V'. Then,
(My, — Ny, Xvp, — Xwp)rm — (M — N, Xv— Xw)rm in D'(Q x (0,T)).

Proof. The proof can be obtained in a way similar to the analogous one showed in the elliptic case, namely
Theorem 3.1. For reader’s convenience we provide in the following the main calculations.

Fix ¢ € C* (2 x (0,T)) and consider the quantity

(v}, + divx My,) — (w}, +divx Ni), (vn — wn) @)vrxv -
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Then

T
/ /(Mh —Nh,th —th)Rm <pdacdt
0 Q

= <(U;L + diVXMh) — (’LU;L + diVXNh), (Uh — U)h) g0>y/><v

T
=k~ i on = w) @by = [ [ (M= N Xohmn (o = w) dodt,
o Ja
Consider the right hand side terms. By assumptions,

<(’U;L + diVXMh) — (’U};L + diVXNh), (’Uh — wh) <p>v/><v
= (f =g, (vn —wn) P)vixv = (f — g, (v —w) P)yrxv .

As regards the second term, by Proposition 2.7 and Theorem 4.1, we get

2 <(U§1 - w%), (vh —wn) P)vrxy

N /(vh —wp)?(2,T) dz — /Q(vh — wp)*(z,0) dz

// v, — wp )¢ (z,t) dadt

—>/ v w xT)dx—/(v—w)Q(x,O)dx

//v— 2! (x,t) dadt

(v = w'), (v = w) P)yrxy.

For the third term one can proceed as in the proof of Theorem 3.1 and conclude. O

The proof of the next result is classical and can be obtained following and adapting (since this is for p = 2)
the analogous one contained in [25] or, for p > 2, the proof contained in [29].

Lemma 4.3. Denote by up(f,p) the solution to problem (Py), h € N. Then, there exist three continuous
operators

B:V xH—=W,
K:V xH—=YV,
M :V x H— L (0,T; L” (Q; R™))

such that, up to subsequences,

un(f,p) = B(f,9) in LP(0,T;H),
.AhUh(f,S@)_)}C(f,QO) m V/7
an (-, Xup(f,9)) = M(f, @)  weakly in L (0,T; L¥ (Q; R™)).

Moreover, B is injective, B(V' x H) is dense in W and B, K and M satisfy

W (B(f.0) +K(f,)=f iV,



G-CONVERGENCE OF ELLIPTIC AND PARABOLIC OPERATORS DEPENDING ON VECTOR FIELDS 17

’C(f,@):leXM(f,QD) mn V/7
B(f,¢)(0)=¢ in H

for every f €V’ and ¢ € H.

Theorem 4.4. Consider a sequence (an)n C Maxo,1)(, B,p) and the related sequence of parabolic operators
(Pr)n, defined in (2.7).

Then, there exists a € MQX(O)T)(Q,/Bl,p), with B = (a’lﬂp)ﬁmax{l,a_z%f}, such that, up to subse-
quences,
Py G-converges to P,
where P : W — V' is the operator in X -divergence form associated to a and defined by
P(u) =u' +divx(a(-,-, Xu)) for everyu €W.
Proof. By Lemma 4.3, B is injective. Therefore, we can define the operator
ABYV x H) =V, A(B(f,9)) = K(f,¢),
which satisfies
allv—w|} < (Av— Aw, v — w>v'xv

and, by similar arguments of Remark 2.11, also
p=2 1
Py P p—1
o — Awllyr < B(191+ ol + lwl) " o = w]§

- 1
for every v,w € B(V' x H), where 8 = (B of%)”‘l.

Since B(V' x H) is dense in W, and then also in V, by the previous estimates A can be extended to another
operator, still denoted by A, A :V — V', satisfying the above estimates and, by Lemma 4.3, also

(B(f.9) + AB(f,9)) =f iV,
A(B(f,¢)) =divxM(f,p) V.

Denote

and, more specifically,

B~ u = (Pu,u(0)),
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and consider the composition N := Mo P : W — LP (0, T; L (Q; R™)). Let us show that

(NU_NU7XU_XU)R7YL 2 OC|XU_XU|p,
and

INu—No| < B[+ (Nu, X)ren + (Nv, Xv)gem]p-1 | Xu — Xo|7T

1 o
a.e. in Q x (0,7T) for any u,v € W, where ' = (of1 pP) -t max{l,a_T—?}.
Fix u,v € W, let (f, ), (g,%) € V' x H satisfy

u(z,t) = B(f,¢) and v(z,t) = B(g,v)
for any (z,t) € Q x (0,T) and denote

up, = 7?,:1(7511) ,

vy =Py H(Po).
By Lemma 4.3,

ah('a'ath(fa@))_)M(facp) P
ah('7 '>th(g7¢)) — M(gﬂb)

weakly in LP' (0, T; L*' (©; R™)) and, since, by Definition 2.10 (i),

(ap(z,t, Xup) — ap(x,t, Xvp), Xup — Xop)rm > a|Xup — Xvp|? heN,

then, by passing to the limit, we get (4.1) in virtue of Lemma 2.9 and Theorem 4.2. Moreover, by Definition
2.10 (ii) and (iii), it also holds that

lan (x,t, Xup) — ap(z,t, Xvp)|

p=2
<p [1 +a Yap(z,t, Xup), Xup)rm + a’l(ah(x,t,th),th)Rm} v
1
X of%(ah(ac,t,th) —ap(x,t, Xvp), Xup — Xvp)gm heN.
Then, by Lemma 2.9, Theorem 4.2 and Lemma 4.3 and, by passing to the limit, we get
p=1
M(f.0) = Mlg. )| 7
_1 _
< Ba”F(14+a H (M(f,9),
1
x| XB(f,¢) — XB(g,¥)|
and (4.2) follows too.

P

XB(f,¢))rm + (M(g, 1), XB(g,§))mm)) 7

We conclude showing that A is an operator in X-divergence form, that is, by constructing a limit function
a(z,t,-) : R™ — R™ satisfying

Nu=a(x,t, Xu) for any u € W a.e. (z,t) € Q x (0,T)
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and, finally, by showing that a € MQX(O’T)(CY, B8, p).

Fix sequences of open sets w; and I; such that w; C Q and E C (0,T) for every j € N and satisfying
Ujenw; X I; = Q x (0,7), and a sequence of cut-off functions ®; € C{(Q x (0,7)) such that ®;(z,t) =1 in
w; x I; for any j € N. Then, for any fixed £ € R", denoted by n = n(x) the vector such that C(z)¢ =n e R™,
we define

a(@,t,n(r)) == lim Nwl(z) forany ze€Q\Zx,

j—+o0
where, set (&, z)rn = &121 + ... + &u2p, the map wg is defined by
wg(x,t) = ({,x)Rn@j(x,t) for any (x,t) € wj x I;.
Notice that a is well-defined by condition (LIC) on the X-gradient, which ensures that (X;(z),...,Xn(x)) are
linearly independent outside Zx.

The last part of the proof follows verbatim as in Step 2 and Step 3 of Theorem 3.3, where one uses (4.1) and
(4.2), instead of (3.6) and (3.7), and Lemma 4.3, instead of Lemma 3.2. O

Lemma 4.5. Consider a sequence (ap)y, C Mq(a, B,p). If

divx (ap(z, X)) G-converges to divx(a(z, X)) and
O + divx (ap(z, X)) G-converges to 9y + divx (b(z,t, X)),

then
a=>o
Proof. Fix g € V' and, for any h € N, denote by uy(g) € V the solution to the problem
divx(ap(x, Xw)) =g inV’.
Then, by hypotheses, the sequence (uy,(g)), satisfies

up(g) = u(g) strongly in LP(Q), (4.3)
an(-, Xun(g)) = a(-, Xu(g)) weakly in L' ((; R™), (4.4)

where u(g) is the unique solution to the problem
divx(a(z,Xw)) =g inV’.

In a similar way, for any fixed couple of data f € V' and ¢ € H, we denote v, (f,p) € W, h € N, the solution
to the problem

{w’ + divy (ap(z, Xw)) = f inV (4.5)

w(0) =@ in H'

Let f(t) =g in V' for every t € [0,T] and ¢, = up(g) in H, and denote vy (g, ur(g)) the solutions of (4.5)
with data (g,up(g)) for any h € N.
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Since (@ )n strongly converges to ¢ := u(g) in H in virtue of (4.3), then, by Remark 2.18, we have

vn(g,un(g)) = v(g,u(g)) strongly in LP(0,T; L*(2)), (4.6)
an(-, Xvn(g,un(g))) = b(-,-, Xv(g,u(g))) weakly in L” (0,T; L ({; R™)). (4.7)

For any h € N, up(g) is also a solution to problem (4.5) with data (g, ur(g)) and, since vy (g, un(g)) is the
solution of (4.5), then

vn (g, n)(0) = or, = up(g) a.e. in Q.

Then, by the uniqueness of the solution to problem (4.5) and by (4.6),

for every t € [0, T

o9, n)(t) = un(g) and v(g,u(g))(t) = u(g)

a.e. in 2, that is, v turns out to be independent of t.

] a
Moreover, by (4.4), (4.7) and, by the uniqueness of the limit, it holds that b is independent of ¢, i.e.

b(l‘, t g) = b(l‘, f)

for every £ € R™, (t € [0,T]) and a.e. z in ). Therefore,

divx(a(z, Xu(g))) =g inV’,
divx (b(z,t, Xv(g,u(g)))) = divx (b(z, Xu(g))) =g inV’,

that is,

A7lg=B71g forevery g€ V',

where A, B : V — V' are, respectively, defined by

Aw = divx(a(z, Xw(z))) and Bw:=divx(b(z, Xw(z))), weV.

Then, A = B and, by the convergence of momenta, we finally get a = b. O
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