For an arbitrary discrete probability-measure-preserving groupoid G, we provide a characterization of property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally, we obtain a characterization of relative property (T) for a subgroupoid H⊂G in terms of the inclusions L(H)⊂L(G).

Lupini M (2020). A VON NEUMANN ALGEBRA CHARACTERIZATION OF PROPERTY (T) FOR GROUPOIDS. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 108(3), 363-386 [10.1017/S144678871800040X].

A VON NEUMANN ALGEBRA CHARACTERIZATION OF PROPERTY (T) FOR GROUPOIDS

Lupini M
2020

Abstract

For an arbitrary discrete probability-measure-preserving groupoid G, we provide a characterization of property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally, we obtain a characterization of relative property (T) for a subgroupoid H⊂G in terms of the inclusions L(H)⊂L(G).
2020
Lupini M (2020). A VON NEUMANN ALGEBRA CHARACTERIZATION OF PROPERTY (T) FOR GROUPOIDS. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 108(3), 363-386 [10.1017/S144678871800040X].
Lupini M
File in questo prodotto:
File Dimensione Formato  
kazhdan-groupoids-J-Aust-revised (002).pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 516.09 kB
Formato Adobe PDF
516.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/913310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact