For an arbitrary discrete probability-measure-preserving groupoid G, we provide a characterization of property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally, we obtain a characterization of relative property (T) for a subgroupoid H⊂G in terms of the inclusions L(H)⊂L(G).
Lupini M (2020). A VON NEUMANN ALGEBRA CHARACTERIZATION OF PROPERTY (T) FOR GROUPOIDS. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 108(3), 363-386 [10.1017/S144678871800040X].
A VON NEUMANN ALGEBRA CHARACTERIZATION OF PROPERTY (T) FOR GROUPOIDS
Lupini M
2020
Abstract
For an arbitrary discrete probability-measure-preserving groupoid G, we provide a characterization of property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally, we obtain a characterization of relative property (T) for a subgroupoid H⊂G in terms of the inclusions L(H)⊂L(G).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
kazhdan-groupoids-J-Aust-revised (002).pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
516.09 kB
Formato
Adobe PDF
|
516.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.