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A VON NEUMANN ALGEBRA CHARACTERIZATION

OF PROPERTY (T) FOR GROUPOIDS

MARTINO LUPINI

Abstract. For an arbitrary discrete probability-measure-preserving groupoid G, we provide a charac-
terization of property (T) for G in terms of the groupoid von Neumann algebra L(G). More generally,
we obtain a characterization of relative property (T) for a subgroupoid H ⊂ G in terms of the inclusions
L (H) ⊂ L (G).

1. Introduction

Property (T) for countable probability-measure-preserving (pmp) equivalence relations has been
introduced by Zimmer in [23]. The natural generalization to discrete pmp groupoids has been studied
by Anantharaman-Delaroche in [2]. In view of the importance of property (T) in the setting of
operator algebras, and the key role it plays in Popa’s deformation/rigidity theory, it is valuable to
have a characterization of property (T) for a discrete pmp groupoid G solely in terms of the inclusion
L∞(G0) ⊂ L(G), where L(G) is the groupoid von Neumann algebra of G and G0 is the unit space
of G. Such a characterization has been established by Connes and Jones in the case where G is a
countable discrete group with infinite conjugacy classes, in which case L(G) is a II1 factor. They
showed in [5] that, under those assumptions, G has property (T) if and only if L(G) has property (T)
in the sense defined therein. When G is an ergodic II1 equivalence relation, in which case L(G) is a
II1 factor and L∞(G0) is a Cartan subalgebra of L(G), a characterization of property (T) in terms
of the corresponding von Neumann algebra has been established by Popa in [17]. It is shown there
that, under those assumptions, G has property (T) as defined by Zimmer if and only if the inclusion
L(G0) ⊂ L(G) is co-rigid in the sense of [18, Remark 5.6.1]. (The idea of characterising property (T)
of a countable pmp equivalence relation by a property of the associated Cartan pair can be traced back
to [14].) The purpose of this paper is to provide a common generalization of such characterizations,
applicable to an arbitrary discrete pmp groupoid G.

More generally, given a subgroupoid H of G, we consider the natural notion of relative property
(T) of H in G, generalizing the usual notion for groups. We then obtain a characterization of relative
property (T) of H in G in terms of the inclusion L∞ (X) ⊂ L (H) ⊂ L(G), where X is the common
unit space of G and H. Again, such a characterization is applicable to an arbitrary pair of discrete
pmp groupoids. In the case of groups, relative property (T) has been characterized in terms of the
group von Neumann algebra by Popa in [18, Proposition 5.1]. It is shown there that the pair H ≤ G
has property (T) if and only if the inclusion L (H) ⊂ L (G) is rigid in the sense defined therein; see
[18, Definition 4.2].

More generally, we consider a notion of property (T) for a triple K ≤ H ≤ G consisting of a discrete
pmp groupoid G together with nested subgroupoids K,H. Such a notion has been considered in the
setting of groups in [8, Definition 2.3]. It subsumes property (T) for a pair H ≤ G in the case when
K is the trivial subgroupoid of G, i.e. the unit space. Again we obtain, for an arbitrary such triple, a
characterization of property (T) in terms of the inclusions L∞ (X) ⊂ L (K) ⊂ L (H) ⊂ L(G). We also
provide a cohomological characterization of such a notion, and in particular of the notion of relative
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2 MARTINO LUPINI

property (T). In the case of property (T) for a single groupoid, such a characterization has been
obtained by Anantharaman-Delaroche in [2].

The rest of this paper is divided into two sections, apart from this introduction. In Section 2 we
recall the fundamental notions and definitions concerning groupoids to be used in the rest of the
paper, introduce the notion of property (T) for triples of groupoids, and obtain the cohomological
characterization of property (T) for triples of groupoids mentioned above. In Section 3 we obtain
a von Neumann algebra characterization of property (T) for triples of groupoids, in terms of the
groupoid von Neumann algebras.

Throughout the paper, we follow the convention that scalar products in Hilbert spaces are linear
in the second variable and conjugate-linear in the first variable.

Acknowledgments. We thank the anonymous referee for their careful reading of this article and for
many useful suggestions and remarks.

2. Property (T) for groupoids

2.1. Groupoids. A groupoid is, briefly, a small category G where every morphism is invertible. In this
case, the objects of G are also called units, and the set of units is denoted by G0. The morphisms in G
are also called arrows. As it is customary, we canonically identify every object with the corresponding
identity arrow. This allows one to regard G0 as a subset of G. There are canonical source and range
maps s, r : G→ G0 that map each arrow γ in G to the objects s(γ), r(γ) ∈ G0 such that γ is an arrow
from s(γ) to r(γ). A pair of arrows (γ, ρ) is composable if s(γ) = r(ρ). The set of pairs of composable
arrows of G is denoted by G2. One can then regard composition of arrows as a function G2 → G,
(γ, ρ) 7→ γρ. Since by assumption every arrow of G is invertible, one can also consider the function
G → G, γ 7→ γ−1 that maps each arrow to its inverse. In the following, given subsets A,B of G, we
let AB be the set of arrows γρ for (γ, ρ) ∈ G2∩ (A×B). If γ ∈ G, we also write Aγ and γA for A {γ}
and {γ}A, respectively. Consistently, if x is a unit of G, then xA is the set of arrows in A with range
x, and Ax is the set of arrows in A with source x.

A Borel groupoid is a groupoid G endowed with a standard Borel structure such that the set
of objects is Borel, and composition and inversion of arrows are Borel maps. A countable Borel
groupoid is a standard Borel groupoid such that xG and Gx are countable sets for every x ∈ G0 or,
equivalently, source and range maps are countable-to-one. In the following we will tacitly use classical
Borel selection theorems for countable-to-one Borel maps as can be found in [13, Section 18.C]. A
discrete probability-measure-preserving (pmp) groupoid is a pair (G,µ) where G is a countable Borel
groupoid and µ is a Borel probability measure on G0 satisfying∫

x∈G0

|xA| dµ(x) =

∫
x∈G0

|Ax| dµ(x)

for every Borel subset A of G. In such a case this expression defines an extension of µ to a σ-finite
Borel measure defined on the whole of G. In the following we regard a discrete pmp groupoid G as a
measure space endowed with such a measure. One can also define a canonical measure on G2 given
by

µG2(A) =

∫
x∈G0

(A ∩ (Gx× xG)) dµ(x).

Given a non-null Borel subset A of G0 one can define the reduction G|A to be the groupoid AGA with
set of objects A endowed with the measure µA := 1

µ(A)µ. Such a reduction is called inessential if A

is conull. In the following, we identify two discrete pmp groupoids whenever they have isomorphic
inessential reductions. A Borel subset A of G is invariant if r (GA) = A. The groupoid G is ergodic if
every invariant set A ⊂ G0 is either null or conull.

Suppose that G is a discrete pmp groupoid, and H is a standard Borel groupoid. A homomorphism
from G to H is a Borel map f : G→ H satisfying s (f(γ)) = f (s(γ)) and r (f(γ)) = f (r(γ)) for a.e.
γ ∈ G, and f (γρ) = f(γ)f(ρ) for a.e. (γ, ρ) ∈ G2. This is equivalent to the assertion that there exists
a conull Borel subset A of G0 such that s (f(γ)) = f (s(γ)), r (f(γ)) = f (r(γ)), and f (γρ) = f(γ)f(ρ)
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for ever γ, ρ ∈ AGA [19, Lemma 5.2]. A subgroupoid of G is a Borel subset H of G which is also a
groupoid, such that G and H have the same unit space (X,µ), and the inclusion map H ⊂ G is a
homomorphism from H to G.

A (Borel) bisection of a discrete pmp groupoid G is a Borel subset t of G such that xt and tx have
size at most 1 for every x ∈ G0. Borel bisections naturally form an inverse semigroup with respect to
the operation

(t0, t1) 7→ t0t1 =
{
γρ : (γ, ρ) ∈ (t0 × t1) ∩G2

}
.

The full pseudogroup [[G]] of G is the inverse semigroup consisting of Borel bisections modulo the
relation of being equal almost everywhere. In the following we will always identify Borel bisections
when they agree almost everywhere. The full group [G] is the subset of [[G]] consisting of the Borel
bisections t such that tt−1 = t−1t = G0. This is a Polish group with respect to the topology induced
by the metric d (t0, t1) = µ (t0 4 t1). A countable subgroup Γ of [G] covers G if G =

⋃
Γ. If G is

ergodic and A,B are Borel subsets of G0, then µ(A) = µ(B) if and only if there exists t ∈ [G] such
that B = r (tA).

Clearly, any countable discrete group is, in particular, a discrete pmp groupoid. Indeed, these are
precisely the discrete pmp groupoids whose unit space contains a single element. At the opposite
end of the spectrum, every countable pmp equivalence relation is a discrete pmp groupoid. Indeed,
these are precisely the discrete pmp groupoids G which are principal, in the sense that the function
G → G0 × G0, γ 7→ (r(γ), s(γ)) is one-to-one. Thus, the class of discrete pmp groupoids subsumes
both countable discrete groups and countable pmp equivalence relations.

2.2. Representations of groupoids. Suppose that X is a standard probability space. A standard
Borel space fibered over X is a standard Borel space Z endowed with a distinguished Borel map
p : Z → X. In this case we let, for x ∈ X, Zx := p−1 {x} be the corresponding fiber over x. We denote
the space Z also by

⊔
x∈X Zx. Given two standard Borel spaces Z,Z ′ fibered over X one can define

the fibered product

Z ∗ Z ′ =
{(
z, z′

)
∈ Zx × Z ′x : x ∈ X

}
⊂ Z × Z ′,

which is still a standard Borel space fibered over X. A fibered map f from Z to Z ′ is a Borel function
that maps Zx to Z ′x for x ∈ X. If Y is a standard Borel space, then we regard Y ×X as a standard
Borel space fibered over X with respect to the product Borel structure and the projection to the
second factor. In particular, we regard X as a standard Borel space fibered over itself via the identity
map. A section σ for a standard Borel space Z fibered over X is a fibered map from X to Z, i.e. a
Borel function X → Z, x 7→ σx such that σx ∈ Zx for x ∈ X.

A (Borel, complex) Hilbert bundle over X is a standard Borel space H fibered over X endowed
fibered functions 0 : X → H (zero section), + : H ∗ H → H (sum), and C × H → H (scalar
multiplication) that define on each fiber Hx for x ∈ X a (complex) vector space structure, and
such that there exists a sequence of sections (σn)n∈N of H such that {σn,x : n ∈ N} has dense linear
span in Hx. The Gram-Schmidt orthonormalization process shows that one can furthermore assume
that {σn,x : n ∈ N} is an orthonormal basis of Hx for x ∈ X. In this case, we call (σn)n∈N an
orthonormal basic sequence for H. The unitary groupoid U(H) is the groupoid consisting of the
unitary operators U : Hx → Hy for x, y ∈ X. This is a standard Borel groupoid when endowed with
the standard Borel structure generated by the source and range maps together with the functions
(U : Hx → Hy) 7→ 〈σn,y, Uσm,x〉 for n,m ∈ N. The unit space of U(H) can be identified with X. One
can also consider the space L2 (X,H) of sections for H satisfying∫

‖ξx‖2 dµ(x) < +∞

identified when they agree almost everywhere. This is a Hilbert space with respect to the inner product

〈ξ, η〉 =

∫
〈ξx, ηx〉 dµ(x)

for ξ, η ∈ L2 (X,H).
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Suppose that G is a discrete pmp groupoid, and H is a (complex) Hilbert bundle over G0. A
(unitary) representation of π on H is a homomorphism from G to U(H) that is the identity on the
unit space. An invariant sub-bundle of H is a Borel subset K of H such that Kx is a subspace of
H for a.e. x ∈ G0, and πγ maps Ks(γ) onto Kr(γ) for a.e. γ ∈ G. When G is ergodic, the Borel
function x 7→ dimKx is constant almost everywhere. Hence, one can define its constant value to be
the dimension of K. Real Hilbert bundles and (orthogonal) representations of discrete pmp groupoids
on real Hilbert bundles can be defined in a similar fashion.

A representation π of G on H induces a representation [[π]] of the inverse semigroup [[G]] on
L2
(
G0,H

)
. This is defined by setting

([[π]]σ ξ)x =

{
πxσξs(xσ) if x ∈ σσ−1

0 otherwise.

In particular the restriction [π] of [[π]] to [G] is a continuous representation of the Polish group [G].
A unit section for H is a section ξ such that ‖ξx‖ = 1 for a.e. x ∈ G0. A unit section ξ for H is

invariant if πγξs(γ) = ξr(γ) for a.e. γ ∈ G. We say that the representation π of an ergodic discrete
pmp groupoid G on H is ergodic if it has no invariant unit sections. This is equivalent to the assertion
that for some (equivalently, every) countable subgroup Γ of [G] that covers G, [π] |Γ is ergodic. Let ξ
be a unit section for H. We say that ξ is cyclic if, for a.e. x ∈ G0 one has that

{
πγξs(γ) : γ ∈ xG

}
has

dense linear span in Hx.
Let H :=

⊔
x∈Hx Hx, where Hx denotes the conjugate Hilbert space of Hx, with canonical conjugate

linear isomorphism Hx → Hx, ξ 7→ ξx. The conjugate representation π of G on H is defined by
πγξ = πγξ for γ ∈ G and ξ ∈ Hs(γ).

Suppose that π0 and π1 are representations of G on Hilbert bundles H0 and H1. Then one can
consider the Hilbert bundle H0 ⊗ H1 :=

⊔
x∈G0 H0,x ⊗ H1,x and the representation π0 ⊗ π1 of G on

H0 ⊗H1 defined in the obvious way.

Remark 2.1. We will frequently use the following observation. Suppose that G is an ergodic discrete
pmp groupoid, A ⊂ G0 is a non-null Borel set, and π is a representation of G on H. Then one can
consider the representation πA of G|A on H|A =

⊔
x∈AHx obtained from π by restriction. If η is an

invariant section for H|A, then there exists a unique invariant section ξ for G such that ξx = ηx for
x ∈ A. In particular, π is ergodic if and only if πA is ergodic.

The notion of weak mixing representation has been introduced in [8, Definition 3.11]. The repre-
sentation π of an ergodic groupoid G on H is weak mixing if, for every ε > 0, n ∈ N, and sections
ξ1, . . . , ξn for H there exists t ∈ [G] such that, for every i, j ∈ {1, 2, . . . , n},∫

G0

∣∣〈ξj,x, πxtξi,s(xt)〉∣∣ dµ(x) ≤ ε.

Several equivalent characterizations of such a notion have been established in [8, Subsection 3.3] in
analogy with the case of representations of groups. Particularly, a representation π of an ergodic
discrete pmp groupoid G on H is weak mixing if and only if for some (equivalently, every) countable
subgroup Γ of [G] that covers G, [π] |Γ is weak mixing, if and only if H does not have an finite-
dimensional invariant sub-bundle, if and only if π ⊗ π is ergodic.

2.3. Property (T). Suppose that Γ is a countable discrete group, and π is a representation of Γ on
a Hilbert space H. If F is a subset of Γ, and ε > 0, then a unit vector ξ of H is (F, ε)-invariant if it
satisfies ‖πγξ − ξ‖ ≤ ε for every γ ∈ F . The representation π has almost invariant vectors if, for every
finite subset F of Γ and for every ε > 0, it has an (F, ε)-invariant vector. The group Γ has property
(T) if every representation of Γ that has almost invariant unit vectors, it has an invariant unit vector
[3]. A standard reference for the theory of property (T) groups is [3].

The notion of property (T) for pmp equivalence relations has been introduced in [23]. A natural
common generalization of the notion of property (T) for discrete groups and pmp equivalence relations
has been considered in [2]. Let G be a discrete pmp groupoid with unit space X, and π be a represen-
tation of G on a Hilbert bundle H. If F is a subset of [G] and ε > 0, then we say that a unit section ξ
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for H is (F, ε)-invariant if it satisfies ‖[π]t ξ − ξ‖L2(X,H) ≤ ε for every t ∈ F . The representation π has

almost invariant unit sections if, for every finite subset F of [G] and ε > 0, it has an (F, ε)-invariant
unit section. The discrete pmp groupoid G has property (T) if every representation π of G that has
almost invariant unit sections also has an invariant unit section [2, Definition 4.3].

The notion of property (T) admits a natural relative version for subgroups. Suppose that Γ is a
countable discrete group, and Λ ≤ Γ is a subgroup. If π is a representation of Γ on a Hilbert space H,
then a unit vector ξ inH is Λ-invariant if it is invariant for the restriction of π to Λ. Then Λ has relative
property (T) in Γ, or the pair Λ ≤ Γ has property (T), if every representation of Γ that has almost
invariant unit vectors, it has a Λ-invariant unit vector. This notion admits a natural generalization
to discrete pmp groupoids. Suppose that G is a discrete pmp groupoid, H is a subgroupoid of G, and
π is a unitary representation of G on a Hilbert bundle H. Then a unit section ξ for H is H-invariant
if it is invariant for the restriction of π to H. Then H has the relative property (T) in G, or pair
H ≤ G has property (T), if every representation of G that has almost invariant unit sections admits
an H-invariant unit section. Clearly, when H = G, this recovers property (T) for a single discrete
pmp groupoid.

A natural generalization of property (T) from pairs of groups to triples of groups has been considered
in [8, Definition 2.3]. Suppose that Γ is a countable discrete group, and ∆ ≤ Λ ≤ Γ are nested
subgroups. Then the triple ∆ ≤ Λ ≤ Γ has property (T) if every representation of Γ with almost
invariant ∆-invariant unit vectors admits a Λ-invariant unit vector. Clearly, when ∆ is the trivial
subgroup one recovers the notion of property (T) for pairs of groups. Naturally, one can generalize
such a notion to discrete pmp groupoids as follows. Suppose that G is a discrete pmp groupoid, and
K ≤ H ≤ G are nested subgroupoids.

Definition 2.2. The triple K ≤ H ≤ G has property (T) if, for every representation π of G, if π has
almost invariant K-invariant unit sections, then π has an H-invariant unit section.

Remark 2.3. When H is ergodic, in Definition 2.2 one can equivalently require that every repre-
sentation of G with almost invariant K-invariant unit sections has a nonzero H-invariant section ξ.
Indeed, in this case one has that there exists δ > 0 such that ‖ξx‖ = δ for a.e. x ∈ H0. Therefore δ−1ξ
is an H-invariant unit section.

Again, when K is the trivial subgroupoid of H—i.e. K is equal to the common unit space of H and
G—one recovers the notion of property (T) for pairs H ≤ G.

Several equivalent characterizations of property (T) for pairs of groups are established in [11].
Furthermore, a cohomological characterization of property (T) for discrete pmp groupoids is the main
result of [2]. In this section we provide a characterization of property (T) for triples of discrete pmp
groupoids, subsuming the characterizations from [2, 11].

2.4. Cohomology of representations. Let G be a discrete pmp groupoid, with subgroupoids K ≤
H ≤ G. Denote by X their common unit space. In the space of complex-valued Borel functions on G
consider the (Polish) topology generated by the pseudometrics

dt
(
ϕ,ϕ′

)
:=

∫
x∈X

|ϕ (tx)− ϕ′ (tx)|
1 + |ϕ (tx)− ϕ′ (tx)|

dµG0(x)

where t ranges within (a dense subset of) [G]. If H is a Hilbert bundle over X, then we let S (G,H)
be the space of Borel functions G→ H, γ 7→ bγ ∈ Hr(γ) endowed with the topology generated by the
pseudometrics

dt
(
b, b′
)

=

∫
x∈X

‖btx − b′tx‖
1 + ‖btx − b′tx‖

dµG0(x)

Suppose that π is a representation of G on the Hilbert bundle H. A cocycle for π is an element b of
S (G,H) such that bγ1γ2 = bγ1 + πγ1 (bγ2) for a.e. (γ1, γ2) ∈ G2. A cocycle b for π is K-trivial if bγ = 0
for a.e. γ ∈ K. A section ξ for H defines a cocycle cπ (ξ) for π by setting cπ (ξ)γ = ξr(γ) − πγξs(γ)

for γ ∈ G. Cocycles of this form are called coboundaries. The section ξ is K-invariant if and only
if cπ (ξ) is K-trivial. We denote the space of K-trivial cocycles for π by Z1

:K (π), and the space of
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K-trivial coboundaries for π by B1
:K (π). We let Z1

:K,H (π) be the set of restrictions to H of elements

of Z1
:K (π). The K-invariant H-relative cohomology group H1

:K,H (π) of π is the quotient of Z1
:K,H (π)

by the subgroup B1
:K (π|H). The same argument as in [2, Proposition 3.9] shows that Z1

:K,H (π) is a

closed subset of S (H,H).
The following result is established in [2, Theorem 3.19].

Theorem 2.4 (Anantharaman-Delaroche). Suppose that G is a measured groupoid. Let π be a rep-
resentation of G, and let b be a cocycle b for π. Consider the following conditions:

(1) b is a coboundary;
(2) there exists a non-null Borel subset A of G0 such that the function AGA → R, γ 7→ ‖bγ‖ is

bounded;
(3) there exists a non-null Borel subset A of G0 such that, for every x ∈ A, the function AGx→ R,

γ 7→ ‖bγ‖ is bounded.

Then (1)⇒(2)→(3).
If furthermore G is an ergodic discrete measured groupoid, then (1),(2),(3) are equivalent.

2.5. Functions of positive and negative type. Suppose that G is a discrete pmp groupoid and
K ⊂ G is a subgroupoid. The following is a standard definition; see [20, Definition 4.1.2].

Definition 2.5. A complex-valued function ϕ : G → C is of positive type if it is Borel, and for a.e.
x ∈ X, for every n ≥ 1, γ1, . . . , γn ∈ xG, and λ1, . . . , λn ∈ C one has that

n∑
i,j=1

λiλjϕ
(
γ−1
i γj

)
≥ 0.

A real-valued function ϕ : G→ R is of positive type if it is Borel, ϕ(γ) = ϕ(γ−1) for a.e. γ ∈ G, and
for a.e. x ∈ X, for every n ≥ 1, γ1, . . . , γn ∈ xG, and λ1, . . . , λn ∈ R one has that

n∑
i,j=1

λiλjϕ
(
γ−1
i γj

)
≥ 0.

The function ϕ is K-invariant if ϕ (ρ0γ) = ϕ(γ) = ϕ (γρ1) for every ρ0, ρ1 ∈ K and γ ∈ G such
that (ρ0, γ) , (γ, ρ1) ∈ G2. The function ϕ is called normalized if ϕ(x) = 1 for a.e. x ∈ G0.

The same proof as [6, Proposition 5.3] gives the following.

Proposition 2.6. Suppose that ϕ is a Borel complex-valued (respectively, real-valued) function on G.
The following assertions are equivalent:

(1) ϕ is a normalized K-invariant function of positive type;
(2) there exists a representation πϕ of G on a complex (respectively, real) Hilbert bundle Hϕ and

a K-invariant cyclic unit section ξϕ for Hϕ such that ϕ(γ) =
〈
ξr(γ), πγξs(γ)

〉
for a.e. γ ∈ G.

The representation (πϕ,Hϕ, ξϕ) of G is uniquely determined up to isomorphism, and we will call it
the GNS representation of ϕ.

The following definition is considered in [2, Proposition 5.19].

Definition 2.7. A real-valued function ψ : G→ R on G is of conditionally negative type if it is Borel,
ψ(γ−1) = ψ(γ) for a.e. γ ∈ G, ψ(x) = 0 for a.e. x ∈ G0, and

n∑
i,j=1

λiλjψ
(
γ−1
i γj

)
≤ 0

for a.e. x ∈ G0, for every n ≥ 2, λ1, . . . , λn ∈ R satisfying λ1 + · · ·+λn = 0, and every γ1, . . . , γn ∈ xG.
A complex-valued function ψ : G → C is of conditionally negative type if it satisfies the same

properties where one consider complex scalars instead of real scalars.

The following proposition is essentially established in [2, Proposition 5.21].
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Proposition 2.8. Suppose that ψ is a Borel real-valued function on G. The following assertions are
equivalent:

(1) ψ is a K-invariant function of conditionally negative type;
(2) there exists a real Hilbert bundle Hψ, a representation πψ of G on Hψ, and a K-trivial cocycle

bψ for πψ such that {bψγ : γ ∈ xG} has dense linear span in Hψ, and such that ψ (ργ) =∥∥∥bψγ − bψρ−1

∥∥∥2
for a.e. (ρ, γ) ∈ G2.

The following two lemmas are consequences of [3, Theorem C.3.2] and [6, Proposition 5.18].

Lemma 2.9. Suppose that ψ : G → R is a Borel real-valued function such that ψ(x) = 0 for a.e.
x ∈ X and ψ(γ) = ψ(γ−1) for a.e. γ ∈ G. Then the following assertions are equivalent:

(1) ψ is conditionally of negative type;
(2) the function γ 7→ exp (−tψ(γ)) is of positive type for every t > 0.

Lemma 2.10. Suppose that ψ : G→ C is a complex-valued function of conditionally negative type.
Then Re (ψ) is a real-valued function of conditionally positive type. Furthermore, ψ is bounded if and
only if Re (ψ) is bounded and, for every x ∈ G0, Re (ψ) |Gx is bounded if and only if ψ|Gx is bounded.

2.6. A cohomological characterization. We now provide a characterization of property (T) for
triples of groupoids, including in particular a cohomological characterization; see Theorem 2.13 below.
Such a cohomological characterization generalizes the one in [2] for single groupoids. Even in this
case, some parts of the proof presented here are different, and in fact closer in spirit to the group case
as in [11].

Lemma 2.11. Suppose that G is a discrete pmp groupoid with unit space (X,µ), and H is an ergodic

subgroupoid of G. Let ψ : G → R be a function of conditionally negative type. For t > 0 let π(t)

be the representation on the Hilbert bundle H(t) and ξ(t) be the section of H(t) obtained from the
function of positive type exp (−tψ) via the GNS construction. The following assertions are equivalent:

(1) there exists a non-null Borel subset A of X such that, for a.e. x ∈ A, ψ|AHx is bounded;

(2) for every t > 0, π(t)|H is not ergodic;

(3) there exists t > 0 such that π(t)|H is not weak mixing;
(4) for every non-null Borel subset B of X there exists a non-null Borel subset A of X contained

in B such that, for a.e. x ∈ A, ψ|AHx is bounded;
(5) for every non-null Borel subset B of X, there exists a non-null Borel subset A of X contained

in B such that ψ|AHA is bounded.

Proof. (1)⇒(2) Suppose that ψ|AHx is bounded by cx for a.e. x ∈ A, where A is a non-null Borel subset
of X. In view of Remark 2.1, after replacing G with G|A, we can assume that A = X. Fix t > 0. Set

c :=
∫

exp (−tcx) dµ(x) for t > 0. Define C to be the closed convex hull of
{[
π(t)
]
ξ(t) : σ ∈ [H]

}
. We

claim that ‖ξ‖ ≥ c for every ξ ∈ C. It is enough to consider the case when ξ =
∑n

i=1 si
[
π(t)
]
σi
ξ(t) for

σi ∈ [H] and si ∈ [0, 1] such that s1 + · · ·+ sn = 1. In this case, we have that∥∥∥∥∥∑
i

si[π
(t)]σiξ

(t)

∥∥∥∥∥
2

=
∑
ij

sisj

〈
ξ(t), [π(t)]σ−1

i σj
ξ(t)
〉
dµ(x)

=
∑
ij

sisj

∫
exp

(
−tψ

(
σ−1
i σjx

))
dµ(x)

≥
∑
ij

sisj

∫
exp (−tcx) dµ(x) = c.

Pick now an element ξ of C of minimal norm. Observe that ξ is nonzero, and it is H-invariant by
uniqueness.

(2)⇒(3) Obvious.
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(3)⇒(1) Suppose that (1) does not hold. Thus for every non-null Borel subset A of X, there exists
a non-null Borel subset B such that for every x ∈ B, ψ|AHx is unbounded. Fix t > 0. We claim that

this implies that, for any unit section η for H(t) ⊗ H(t)
and ε ∈ (0, 1) there exists ρ ∈ [H] such that

one has that ∣∣∣∣∥∥∥[π(t) ⊗ π(t)]ρη − η
∥∥∥2
− 2

∣∣∣∣ < ε.

In particular this shows that
(
π(t) ⊗ π(t)

)
|H is ergodic, and hence π(t)|H is weak mixing. Since ξ(t) is

a cyclic unit section for H(t), it suffices to prove the claim when η is of the form

x 7→
n∑

ij=1

aij (x) ([π(t)]σiξ
(t))x ⊗ ([π(t)]σ′jξ

(t)
)x,

where n ∈ N, aij ∈ L∞ (X), and σi, σ
′
j ∈ [G] for i, j = 1, 2, . . . , n. For z ∈ X, fix M(z) > 0 such that

max
{∣∣aij(r(σ−1

k z))
∣∣ exp(−tM(z)) : 1 ≤ i, j, k ≤ n

}
≤ ε

n4
. (i)

By assumption for every non-null Borel subset A of X there exists a non-null Borel subset B of A
such that, for every x ∈ B, ψ|AHx is unbounded. This easily implies that there exists ρ ∈ [H] such
that, for a.e. z, w ∈ X, for every 1 ≤ i, k ≤ n,

ψ (zρw) ≥M(z)1/2 + ψ (σkz)
1/2 + ψ

(
wσ′i

)1/2
. (ii)

We have that

1

2

∣∣∣‖([π]ρ ⊗ [π]ρ)η − η‖2 − 2
∣∣∣

= Re

n∑
i,j,k,l=1

∫
x∈X

akl(x)aij(x)

〈
ξ(t)
x ⊗ ξ

(t)
x , π

(t)

xσ−1
k ρσ′i

ξ
(t)

s(xσ−1
k ρσ′i)

⊗ π(t)

xσ−1
l ρσ′j

ξ
(t)

s(xσ−1
l ρσ′j)

〉
dµ(x)

= Re
n∑

i,j,k,l=1

∫
x∈X

akl(x)aij(x) exp
(
−tψ

(
xσ−1

k ρσ′i
)
− tψ

(
xσ−1

l ρσ′j
))
dµ(x).

Now let (Hψ, bψ, πψ) be a triple obtained from ψ as in Proposition 2.8. Thus we have that Hψ is a
real Hilbert bundle over X, πψ is a representation of G on Hψ, and bψ is a cocycle for πψ such that

ψ
(
g−1h

)
=
∥∥∥bψg − bψh∥∥∥2

for g, h ∈ G. Thus, for a.e. x ∈ X, by the choice of ρ,

ψ
(
xσ−1

k ρσ′i
)

=
∥∥∥br(σkx)ρσ′i

− bσkx
∥∥∥2

=
∥∥∥br(σkx)ρ + πr(σkx)ρbs(r(σkx)ρ)σ′i

− bσkx
∥∥∥2

≥
(∥∥br(σkx)ρ

∥∥− ∥∥∥bs(r(σkx)ρ)σ′i

∥∥∥− ‖bσkx‖)2

=
(
ψ (r (σkx) ρ)1/2 − ψ

(
s(ρ)σ′i

)1/2 − ψ (σkx)1/2
)2

≥ M (r (σkx)) ,

where we used (ii) at the last step. Similarly, for a.e. x ∈ X,

ψ(xγ−1
l ργ′j) ≥M (r (σlx)) .
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Hence we have that∣∣∣∣∥∥∥([π]ρ ⊗ [π]ρ)η − η
∥∥∥2
− 2

∣∣∣∣
= Re

n∑
i,j,k,l=1

∫
x∈X

akl(x)aij(x) exp
(
−tψ

(
xσ−1

k ρσ′i
)
− tψ

(
xσ−1

l ρσ′j
))
dµ(x)

≤ Re
n∑

i,j,k,l=1

∫
x∈X

akl(x)aij(x) exp (−tM (r (σkx))− tM (r (σlx))) dµ(x) ≤ ε

by (i). This concludes the proof.
(1)⇔(4) Suppose that B is a non-null Borel subset of X, and π is a representation of G. Since H is

ergodic, by Remark 2.1 the equivalence (1)⇔(4) follows from the equivalence (1)⇔(2) after replacing
G with G|B.

(4)⇔(5) This follows from Theorem 2.4. �

Lemma 2.12. Let π be a representation of a discrete pmp groupoid G on H and fix δ > 0. Suppose
that ξ is a unit section for H. Assume that for every γ ∈ G one has that

∥∥ξr(γ) − πγξs(γ)

∥∥ ≤ δ. Then
there exists an invariant section η of H such that‖ηx − ξx‖ ≤ δ for a.e. x ∈ X.

Proof. For every x ∈ G0 let Cx be the closed convex hull of {πγ−1ξr(γ) : γ ∈ Gx}. Let then ηx be

the (unique) element of minimal norm of Cx for x ∈ G0. If x ∈ X then we have that, for every
γ1, . . . , γn ∈ Gx and s1, . . . , sn ∈ [0, 1] such that s1 + · · ·+ sn = 1 one has that∥∥∥∥∥∑

i

siπγ−1
i
ξr(γi) − ξx

∥∥∥∥∥ ≤∑
i

si
∥∥ξr(γi) − πγiξx∥∥ ≤ δ.

Therefore

‖ζ − ξx‖ ≤ δ
for every ζ ∈ Cx and in particular

‖ηx − ξx‖ ≤ δ.
By uniqueness of the element of least norm in Cx one also has that η is invariant. �

The proof of the following result is inspired by [11, Theorem 1.2] and [2, Theorem 4.8 and Theorem
4.12].

Theorem 2.13. Let G be a discrete pmp groupoid, and K ≤ H ≤ G be subgroupoids. Fix a countable
subgroup Γ of [G] that covers G. Let (X,µ) be the common unit space of K,H,G. Suppose that H is
ergodic. The following statements are equivalent:

(1) There exists a finite subset F of [G] and δ > 0 such that, whenever a representation π of G
has an (F, δ)-invariant K-invariant unit section, then π has an H-invariant unit section;

(2) There exists a finite subset F of [G] and δ > 0 such that, whenever a representation π of G
on a Hilbert bundle H has an (F, δ)-invariant K-invariant unit section, then H contains a
finite-dimensional π|H-invariant sub-bundle;

(3) For every complex-valued K-invariant Borel function ψ on G which is conditionally of negative
type, there exists a non-null Borel set A of X such that, for every x ∈ A, ψ|AHx is bounded;

(4) For any representation π of G, one has that H1
:K,H (π) is trivial.

(5) the triple K ≤ H ≤ G has property (T);
(6) For every ε > 0 and non-null Borel subset B of X there exists a finite subset F of Γ and

δ > 0 such that for every normalized K-invariant function of positive type ϕ on G such
that maxt∈F

∫
x∈X |ϕ (xt)− 1|2 dµ(x) ≤ δ, there is a non-null Borel subset A of B such that

Re (1− ϕ(γ)) ≤ ε for a.e. γ ∈ AHA;
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(7) For every ε > 0 and non-null Borel subset B of X there exists a finite subset F of Γ and δ > 0
such that, if π is a representation of G on a Hilbert bundle H, and ξ is a (F, δ)-invariant K-
invariant unit section for H, then there is a non-null Borel subset A of B and an H-invariant
section η for π such that ‖ξx − ηx‖ ≤ ε for a.e. x ∈ A;

(8) For every ε > 0, there exists a finite subset F of [G] and δ > 0 such that for every normalized

K-invariant function of positive type ϕ on G such that maxt∈F
∫
x∈X |ϕ (xt)− 1|2 dµ(x) ≤ δ,

there is a non-null Borel subset A of X such that Re (1− ϕ(γ)) ≤ ε for a.e. γ ∈ AHA;
(9) For every ε > 0, there exists a finite subset F of [G] and δ > 0 such that, if π is a represen-

tation of G on a Hilbert bundle H, and ξ is a (F, δ)-invariant K-invariant unit section for H,
then there is a non-null Borel subset A of X and an H-invariant section η for π such that
‖ξx − ηx‖ ≤ ε for a.e. x ∈ A.

Proof. Fix an increasing sequence (Fn) of finite subsets of [G] whose union is Γ.
(1)⇒(2) Obvious.
(2)⇒(3) This is a consequence of Lemma 2.11.
(3)⇒(4) As in the proof of [2, Proposition 4.13], it is enough to consider the case when π is a

representation of G on a bundle of real Hilbert spaces; see also [2, Lemma 4.11] and [6, page 49].
Suppose that b is a K-trivial cocycle for π. Define the K-invariant function of conditional negative
type ψ : G → R by ψ(γ) = ‖bγ‖2. Then by assumption, there exists a non-null Borel subset A of X
such that, for every x ∈ A, ψ|AHx is bounded. This implies by Theorem 2.4 that the restriction of b
to H is a coboundary for π|H . Thus H1

:K,H (π) is trivial.

(4)⇒(5) Suppose by contradiction that there exists a representation π of G that has almost invariant
K-invariant unit sections but it does not have an H-invariant unit section. The hypothesis implies
that B1

:K (π|H) = Z1
:K,H (π). In particular, B1

:K (π|H) is a closed subspace of S (H,H). Let S:K (X,H)

be the space of K-invariant unit sections for H, which is a closed subspace of the space S (X,H) of
sections for H. Define a map β from the space S:K (X,H) to B1

:K (π|H) by

β (ξ)γ := ξr(γ) − πγξs(γ)

for ξ ∈ S (X,H) and γ ∈ H. This map is a continuous linear map from S:K (X,H) onto B1
:K (π|H).

Since by assumption π does not have an H-invariant unit section, such a map is injective. Since a
continuous linear isomorphism between metrizable complete topological vector spaces is a homeomor-
phism, β is a homeomorphism. Since by assumption π has almost invariant K-invariant unit sections,
we can find a sequence

(
ξ(n)

)
of K-invariant unit sections in S:K (X,H) such that β(ξ(n)) → 0.

Therefore ξ(n) → 0, contradicting the fact that the ξ(n)’s are unit sections.
(5)⇒(1) Assume that (1) does not hold. Then for every n ∈ N there exists a representation π(n) on

H(n) without H-invariant unit sections which has a (Fn, 2
−n)-invariant K-invariant unit section ξ(n).

One can then consider the direct sum π of π(n) for n ∈ N. Then π has almost invariant K-invariant
unit sections. Hence by assumption it has an H-invariant unit section ξ. One can write ξ as the direct
sum of sections ξ(n) for H(n) for n ∈ N. Since ξ is H-invariant, one has that ξ(n) is H-invariant for
every n ∈ N. Since ξ is a unit section, there exists n ∈ N such that ξ(n) is not identically zero. Since
H is ergodic, this contradicts the assumption that π(n) does not have H-invariant unit sections.

(3)⇒(6) Suppose that (6) fails. Then there exists c > 0 and a non-null Borel subset B of X
such that for every n ∈ N one can find a K-invariant function of positive type ϕ on G such that
maxt∈Fn

∫
x∈X |ϕ (xt)− 1| dµ(x) ≤ 2−n and for every non-null Borel subset A of B the set of γ ∈ AHA

such that Re (1− ϕ(γ)) ≥ c is non-null. This allows one to find a sequence (ϕn) of K-invariant
functions of positive type on G and Borel subsets Xn of X such that µ (Xn) ≥ 1− 2−n, |ϕ (xt)− 1| ≤
2−n for x ∈ Xn and t ∈ Fn, and such that for every non-null Borel subset A of B the set of γ ∈ AHA
such that Re(1− ϕ(γ)) ≥ c is non-null. One can then define, for a.e. γ ∈ G,

ψ(γ) =
∑
n∈N

2nRe (1− ϕn(γ)) .
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This gives a K-invariant function of conditionally negative type on G such that ψ|AHA is unbounded
for every non-null Borel subset A of B. By Lemma 2.11, this implies that, for every non-null Borel
subset A of X, for a.e. x ∈ A, ψ|AHx is unbounded. Thus ψ contradicts (3).

(6)⇒(7) Fix ε > 0 and a non-null Borel subset B of X. By assumption there exist a finite subset F
of Γ and δ > 0 such that, for every K-invariant normalized function of positive type ϕ on G such that
maxt∈F

∫
x∈X |ϕ (xt)− 1| dµ(x) ≤ δ, there is a non-null Borel subset A of B such that Re (1− ϕ(γ)) ≤ ε

for every γ ∈ AHA. Suppose that π is a representation of G on H that has a K-invariant unit section
ξ satisfying ‖[π]t ξ − ξ‖L2(X,H) ≤ δ for t ∈ F . Define the K-invariant normalized function of positive

type ϕ on G by ϕ(γ) =
〈
ξr(γ), πγξs(γ)

〉
. Then we have that, for t ∈ F ,∫

x∈X
|ϕ (xt)− 1| dµ (x) =

∫
x∈X

∣∣〈ξx, πxtξs(xt)〉− 1
∣∣ dµ(x) =

∫
x∈X

∣∣〈ξx, πxtξs(xt) − ξx〉∣∣ dµ(x)

= |〈ξ, [π]t ξ − ξ〉| ≤ ‖[π]t ξ − ξ‖ ≤ δ.
Therefore by assumption there exists a non-null Borel subset A of B such that, for γ ∈ AHA, one has
that Re (1− ϕ(γ)) ≤ ε. Therefore we have that, for γ ∈ AHA,

1

2

∥∥πγξs(γ) − ξr(γ)

∥∥2
= Re (1− ϕ(γ)) ≤ ε.

Therefore by Lemma 2.12 applied to the representation πA of H|A on H|A obtained from π by re-
striction, we have that there exists a unit section η for H|A which is invariant for πA and such that
‖ξx − ηx‖ ≤ ε for x ∈ A. Since H is ergodic, this concludes the proof by Remark 2.1.

(8)⇒(9) This is the same as (6)⇒(7).
Finally the implications (7)⇒(1), (6)⇒(8), and (9)⇒(1) are obvious. �

Remark 2.14. Theorem 2.13 in the case when G is a countable discrete group and K is the trivial
subgroup recovers [11, Theorem 1]. Theorem 2.13 recovers [2, Theorems 4.8, Theorem 4.12 and
Theorem 5.22] in the case when H = G and K is the trivial subgroupoid.

2.7. Property (T) for action groupoids. Suppose that (X,µ) is a standard probability space. A
standard probability space fibered over (X,µ) is a triple (Y, ν, p) where (Y, ν) is a standard probability
space, and p : Z → X is a Borel map such that p∗ν = µ. We also write (Y, ν) =

⊔
x∈X (Yx, νx) where

(νx)x∈X is the disintegration of ν with respect to µ. One can consider the space Aut
(⊔

x∈X Yx
)

of
Borel maps T : Yx → Yy for x, y ∈ X such that T∗νx = νy. One can define a standard Borel structure
on Aut

(⊔
x∈X Yx

)
that turns it into a standard Borel groupoid, whose unit space can be identified

with X.
Suppose that G is a discrete pmp groupoid, and

⊔
x∈X Yx is a standard probability space fibered over

G0. A probability-measure-preserving (pmp) action θ of G on
⊔
x∈X Yx is a homomorphism γ 7→ θγ

from G to Aut
(⊔

x∈X Yx
)

that is the identity on the unit space. We set γ ·θ y = θγ(y) for γ ∈ G and

y ∈ Ys(γ). One can then define the transformation groupoid G nθ Y . This is the set of pairs (γ, y)
such that γ ∈ G and y ∈ Ys(γ), which is a Borel subset of G× Y endowed with the product topology.
Identifying an element y of Yx for x ∈ X with the pair (x, y), one can identify Y with the unit space
of G nθ Y . The source and range maps on G nθ Y are defined by s (γ, y) = y and r (γ, y) = γ ·θ y.
Composition of arrows is given by (γ, y) (γ′, y′) = (γγ′, y′) whenever γ′ ·θ y′ = y.

Suppose that G is a discrete pmp groupoid, and θ is an action of G on the standard probability
space Y =

⊔
x∈G0 Yx. One can then consider the transformation groupoid G nθ Y . Suppose that

K ≤ H ≤ G are subgroupoids. A representation π of G on H induces a representation π nθ Y of
G nθ Y on H defined by

(
π nθ Y

)
γnθx (ξ) = πγ (ξ) for ξ ∈ Hx. Let b ∈ S (G,H) be a cocycle for π.

Then one can define a cocycle bnθ Y for π nθ Y by setting
(
bnθ Y

)
γnθx = bγ . It is clear that if b is

K-trivial then b nθ Y is K nθ Y -trivial. Furthermore if b|H is a coboundary for π|H , then b|H nθ Y
is a coboundary for

(
π nθ Y

)
|HnθY . Therefore the assignment b 7→ b nθ Y defines a homomorphism

H1
:K,H (π)→ H1

:KnθY,HnθY (π n Y ). The following lemma is an immediate consequence of [2, Lemma

5.12].
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Lemma 2.15. Adopting the notation above, suppose that H is ergodic and the action θ|H of H on
Y is ergodic. Then the homomorphism H1

:K,H (π)→ H1
:KnθY,HnθY (π n Y ) is injective.

Proof. Suppose that b is a K-invariant cocycle for π on H. Assume that
(
bnθ Y

)
|HnθY is a cobound-

ary. Then by [2, Lemma 5.12], b|H is a coboundary. Thus the map H1
:K,H (π)→ H1

:KnθY,HnθY (π n Y )

is injective. �

Suppose now, adopting the notation above, that π is a representation of H nθ Y on H. One

can then define the induced representation π̂ of G as follows. Consider the Hilbert bundle Ĥ =⊔
x∈X L

2 (Yx) ⊗ Hx ∼=
⊔
x∈X L

2 (Yx,Hx). Then the representation π̂ on Ĥ is defined by setting, for

γ ∈ G and ξ ∈ L2
(
Ys(γ),Hs(γ)

)
, π̂γξ to be the element of L2

(
Yr(γ),Hr(γ)

)
given by

(π̂γξ)(y) = πγnθγ−1yξ(γ
−1 ·θ y)

for y ∈ Yr(γ). Observe that this is indeed a representation. In fact we have that

π̂γ(π̂ρξ) = πγnθγ−1y(π̂ρξ)(γ
−1 ·θ y) = πγnθγ−1y(πρoθρ−1γ−1y)ξ(ρ

−1γ−1 ·θ y)

= πγρnθ(γρ)−1yξ((γρ)−1 ·θ y) = π̂γρ(y).

Given a section ξ for H one can define the section ξ̂ of Ĥ by setting ξ̂x = ξ|Yx ∈ L2 (Yx,Hx) for

x ∈ G0. It is clear that if ξ is K n Y -invariant, then ξ̂ is K-invariant. Furthermore it is shown in [2,

Section 5] that if (ξn) is a sequence of almost π-invariant unit sections for H, then (ξ̂n) is a sequence

of almost π̂-invariant unit sections for Ĥ. As in the proof of [2, Theorem 5.15] one can deduce from
Lemma 2.15 and these observations the following.

Theorem 2.16. Suppose that G is a discrete pmp groupoid, and K ≤ H ≤ G are subgroupods such
that H is ergodic. Let θ be an action of G on a standard probability space Y such that θ|H is ergodic.
Then K ≤ H ≤ G has property (T) if and only if K nθ Y ≤ H nθ Y ≤ Gnθ Y has property (T).

3. Rigid inclusions of von Neumann algebras

Suppose that G is a discrete pmp groupoid. One can then consider the Hilbert bundle H =⊔
x∈G0 `2 (xG). Observe that one can canonically identify L2(G0,H) with L2(G). The left regular

representation of G is the representation λ of G on H defined as follows. For γ ∈ G let δγ ∈ `2 (r(γ)G)
be the indicator function of {γ} ⊂ r(γ)G. Then λρδγ = δργ for (ρ, γ) ∈ G2. This gives rise the
representation [[λ]] of [[G]] on L(G). The groupoid von Neumann algebra of G is defined to be the von
Neumann algebra L(G) ⊂ B

(
L2(G)

)
generated by the elements uσ := [[λ]]σ for σ ∈ [[G]]. The main

goal of this section is to provide a characterization of property (T) for (triples of) groupoids in terms
of the associated groupoid von Neumann algebra.

3.1. Hilbert bimodules and ucp maps. Suppose that (M, τ) is a tracial von Neumann algebra.
We let L2 (M) be the Hilbert space obtained from (M, τ) via the GNS construction, and M → L2 (M),
x 7→ |x〉 be the canonical inclusion. Thus |1〉 is the canonical cyclic vector of L2(M) for M .

A (Hilbert) M -M -bimodule is a Hilbert space H endowed with commuting normal *-representations
π of M and ρ of Mop on H. In this case, given x, y ∈ M and ξ ∈ H, one writes xξy for π(x)ρ (yop) ξ.
A vector ξ of H is called tracial if it satisfies 〈ξ, aξ〉 = 〈ξ, ξa〉 = τ(a) for every a ∈M . Given a subset
F of M and ε > 0, a vector ξ in H is F -central if it satisfies aξ = ξa for a ∈ F , and (F, ε)-central if
it satisfies ‖aξ − ξa‖ ≤ ε for a ∈ F . The adjoint M -M -bimodule H is equal to the conjugate Hilbert
space of H endowed with the bimodule structure given by xξy = y∗ξx∗ for x, y ∈M and ξ ∈ H.

A linear map φ : M →M is completely positive (cp) if, for every n ∈ N, idMn(C)⊗φ : Mn (C)⊗M →
Mn (C) ⊗ N maps positive elements to positive elements. If furthermore φ (1) = 1, then φ is unital
completely positive (ucp). A map φ : M →M is trace-preserving if τ ◦ φ = τ . If A is a subalgebra of
M , then a map φ : M → M is an A-bimodule map if it satisfies φ (ax) = aφ(x) and φ (xa) = φ(x)a
for x ∈ M and a ∈ A. Suppose that φ : M → M is a cp A-bimodule map satisfying τ ◦ φ ≤ τ and
φ (1) ≤ 1. Setting Tφ |x〉 = |φ(x)〉 for x ∈ M defines a bounded operator Tφ on L2 (M). The adjoint
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T ∗φ of Tφ is of the form Tφ∗ , where φ∗ : M → M is a cp A-bimodule map satisfying τ ◦ φ∗ ≤ τ and

φ∗ (1) ≤ 1; see [18, Lemma 1.2.1].
Given a nonzero normal cp A-bimodule map φ : M →M satisfying φ (1) ≤ 1 and τ ◦φ ≤ τ , one can

define a Hilbert M -M -bimodule associated with φ as follows. Consider the completion Hφ of M �M
with respect to the inner product defined by

〈a⊗ b, c⊗ d〉 = τ (b∗φ (a∗c) d) .

The M -M -bimodule structure is induced by the maps

x (a⊗ b) y = xa⊗ by

for x, a ∈M and b, y ∈ N . Denoting by ξφ the vector of Hφ obtained from 1⊗ 1 one has that

〈bξφx, aξφy〉 = 〈b⊗ x, a⊗ y〉 = τ (x∗φ (b∗a) y)

In particular we have that 〈ξφ, ξφ·〉 = τ (φ (1) ·) ≤ τ and 〈ξφ, ·ξφ〉 = τ ◦φ ≤ τ . Since φ is an A-bimodule
map, ξφ is A-central. The vector ξφ is cyclic for Hφ, in the sense that {aξφb : a, b ∈M} has dense
linear span in Hφ. If φ is ucp and trace-preserving, then ξφ is a tracial unit vector.

Conversely, suppose that H is an M -M -bimodule with an A-central cyclic vector ξ satisfying 〈ξ, ·ξ〉 ≤
τ and 〈ξ, ξ·〉 ≤ τ . One can define a normal cp A-bimodule map φ : M →M by setting φ(x) = L∗ξxLξ.

Here Lξ : L2(M) → H is the operator defined by Lξ |y〉 = ξy for y ∈ M . If ξ is a tracial unit vector,
then φ is a ucp trace-preserving map. These constructions are inverse of each other. More information
on the correspondence between cp maps and Hilbert bimodules can be found in [18, Section 1].

3.2. Completely positive maps and functions of positive type. Let G be a discrete pmp
groupoid with unit space X. For a function of positive type ϕ on a discrete pmp groupoid G and
σ ∈ [[G]], denote by ϕ(σ) ∈ L∞ (X) the function

x 7→
{
ϕ (xσ) if x ∈ ran(σ) ,

0 otherwise.

The proof of the following proposition is similar to the proofs of [9, Lemma 1.1] and [1, Proposition
3.5.4]. Recall that, if σ ∈ [[G]], then we let uσ be the element [[λ]]σ of L(G) ⊂ B

(
L2(G)

)
, where λ is

the left regular representation of G.

Proposition 3.1. Suppose that G is a discrete pmp group, K ≤ G is a subgroupoid, and ϕ is a
normalized K-invariant function of positive type on G. Then there exists a unique trace-preserving,
L(K)-bimodule normal ucp map φ : L(G)→ L(G) such that

φ(uσ) = ϕ(σ)uσ

for σ ∈ [G].

Proof. Consider the GNS representation (πϕ,Hϕ, ξϕ) of G associated with ϕ. Choose an orthonormal

basic sequence
(
e(i)
)
i∈N for Hϕ. Define a(i) ∈ L∞(G) by setting

a(i)
γ :=

〈
ξϕr(γ), π

ϕ
γ e

(i)
s(γ)

〉
=
〈
πϕ∗γ ξϕr(γ), e

(i)
s(γ)

〉
.
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For γ, ρ ∈ G one has that∑
i∈N

a(i)
ρ a

(i)
γ =

∑
i∈N

〈
e

(i)
s(ρ), π

ϕ∗
ρ ξϕr(ρ)

〉〈
πϕ∗γ ξϕr(γ), e

(i)
s(γ)

〉
=

∑
i,j∈N

〈
e

(i)
s(ρ), π

ϕ∗
ρ ξϕr(ρ)

〉〈
πϕ∗γ ξϕr(γ), e

(j)
s(γ)

〉〈
e

(i)
s(γ), e

(j)
s(γ)

〉
=

∑
i,j∈N

〈〈
πϕ∗ρ ξϕr(ρ), e

(i)
s(ρ)

〉
e

(i)
s(γ),

〈
πϕ∗γ ξϕr(γ), e

(j)
s(γ)

〉
e

(j)
s(γ)

〉
=

〈
πϕ∗ρ ξϕr(ρ), π

ϕ∗
γ ξϕr(γ)

〉
=

〈
ξϕr(γ), π

ϕ
ργ−1ξ

ϕ
r(γ)

〉
= ϕ

(
ργ−1

)
.

For T ∈ L(G) ⊂ B
(
L2(G)

)
set φ (T ) =

∑
i∈N a

(i)∗Ta(i). The convergence is in strong operator
topology, since

∑n
i=1 a

∗
i ai ≤ 1 for every n ∈ N.

Now for ξ ∈ L2(G) and i ∈ N we have that

(a(i)∗buσa
(i)ξ)γ = a(i)∗

γ (buσa
(i)ξ)γ

= a(i)∗
γ br(γ)(uσa

(i)ξ)γ

= a(i)∗
γ br(γ)(a

(i)ξ)σ−1γ

= a(i)∗
γ br(γ)a

(i)
σ−1γ

ξσ−1γ

if r(γ) ∈ σσ−1, and
(
a(i)∗buσa

(i)ξ
)
γ

= 0 otherwise. Therefore we have that

(φ (buσ) ξ)γ =
∑
i∈N

((a(i))∗buσa
(i)ξ)γ

=
∑
i∈N

((a(i)∗
γ a

(i)
σ−1γ

)br(γ)ξσ−1γ

= ϕ(r(γ)σ)br(γ)ξσ−1γ

= (ϕ(σ)buσξ)γ

if r(γ) ∈ σσ−1, and

(φ (buσ) ξ)γ = 0 = (ϕ(σ)buσξ)γ

otherwise. This shows that φ (buσ) = ϕ(σ)buσ. Since
∑

i∈N a
∗
i ai = 1, we have that φ is unital. Clearly,

φ is normal and completely positive, and hence completely contractive. If σ′ ∈ [K] then we have that,
since ϕ is K-invariant,

φ (buσuσ′) = φ (buσσ′) = ϕ(σσ′)buσσ′ = ϕ(σ)buσuσ′ = φ (buσ)uσ′

and

φ (uσ′buσ) = φ (θσ′(b)uσ′σ) = ϕ(σ′σ)θσ′(b)uσ′uσ = uσ′φ (buσ) .

Similarly, if a ∈ L∞ (X) ⊂ L(G) one has that

φ (abuσ) = aφ (buσ)

and

φ (buσa) = φ (buσ) a.

These equations together with that fact that φ is a normal ucp map imply that φ is an L(K)-bimodule
map. This concludes the proof. �
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3.3. Rigidity for von Neumann algebras. In order to characterize property (T) for triples of
groupoids, we introduce a notion of rigidity for a nested quadruple of von Neumann algebras.

Definition 3.2. Let (M, τ) be a tracial von Neumann algebra and Z ⊂ A ⊂ B ⊂M be von Neumann
subalgebras. Then the quadruple Z ⊂ A ⊂ B ⊂ M is rigid if for every ε > 0 and nonzero projection
p0 ∈ Z there is a finite subset F of M and δ > 0 such that for any Hilbert M -M -bimodule H with
an (F, δ)-central and A-central tracial unit vector ξ ∈ H there is a nonzero projection p ∈ Z such that

p ≤ p0 and for every projection q ∈ Z such that q ≤ p one has that ‖xξ − ξx‖ ≤ τ (q)1/2 ‖x‖ ε for
x ∈ qBq.

As in the case of rigidity for pairs of von Neumann algebras as defined in [18], one can provide
several equivalent characterizations of rigidity for quadruples Z ⊂ A ⊂ B ⊂ M . The proof of this
fact is standard, and follows arguments from [10, 15, 16, 18]. We present a full proof, for the reader’s
convenience.

Proposition 3.3. Let (M, τ) be a tracial von Neumann algebra and Z ⊂ A ⊂ B ⊂M be von Neumann
subalgebras. The following assertions are equivalent:

(1) Z ⊂ A ⊂ B ⊂M is rigid;
(2) for every ε > 0 and nonzero projection p0 ∈ Z there exist a finite subset F of M and

δ > 0 such that if φ : M → M is a normal trace-preserving ucp A-bimodule map such that
maxx∈F ‖φ(x)− x‖2 ≤ δ, then there exists a nonzero projection p ∈ Z such that p ≤ p0 and

for every projection q ∈ Z such that q ≤ p one has that ‖φ(b)− b‖2 ≤ ετ (q)1/2 ‖b‖ for every
b ∈ qBq.

(3) the same as (2) where φ is not necessarily unital and trace preserving, but it satisfies τ ◦φ ≤ τ ,
φ (1) ≤ 1, and φ = φ∗;

(4) the same as (2) where φ is not necessarily unital and trace preserving, but it satisfies τ ◦φ ≤ τ
and φ (1) ≤ 1;

(5) for every ε > 0 and nonzero projection p0 ∈ Z there is a finite subset F of M and δ > 0
such that if H is an M -M -bimodule and ξ ∈ H is an (F, δ)-central and A-central unit vector
satisfying 〈ξ, ·ξ〉 ≤ τ and 〈ξ, ξ·〉 ≤ τ , then there exists a nonzero projection p ∈ Z such that

p ≤ p0 and for every projection q ∈ Z such that q ≤ p one has that ‖xξ − ξx‖ ≤ τ (q)1/2 ‖x‖ ε
for every x ∈ qBq.

Proof. (1)⇒(2) Let F be a finite subset of M , and δ > 0. Suppose that φ : M → M is a normal
trace-preserving ucp A-bimodule map such that maxx∈F ‖x‖2 ‖φ(x)− x‖2 ≤ δ/2. Let (H, ξ) be the
corresponding Hilbert M -M -bimodule with distinguished A-central tracial unit vector ξ. For x ∈ M
we have that

‖xξ − ξx‖2 = ‖xξ‖2 + ‖ξx‖2 − 2Re 〈xξ, ξx〉
= 2 ‖x‖22 − 2Re 〈φ(x), x〉L2(M)

= 2Re 〈x− φ(x), x〉L2(M)

≤ 2 ‖x− φ(x)‖2 ‖x‖2 ≤ δ.

By assumption, one can choose F and δ ≤ ε in such a way that this guarantees the existence of

nonzero projection p ∈ Z such that p ≤ p0 and ‖xξ − ξx‖2 ≤ τ (q)1/2 ‖x‖ ε for every projection q ∈ Z
such that q ≤ p, and for x ∈ qBq. For such a q ∈ Z and x ∈ qBq we have that

‖φ(x)− x‖22 = ‖φ(x)‖22 + ‖x‖22 − 2Reτ (φ(x)∗x)

≤ (τ ◦ φ) (x∗x) + τ (x∗x)− 2Reτ (φ(x)∗x)

= ‖xξ − ξx‖2 ≤ τ (q) ‖x‖2 ε2.

(2)⇒(3) Suppose that φ : M → M is a ucp map such that τ ◦ φ ≤ τ , φ (1) ≤ 1, φ = φ∗,
and ‖φ (1)− 1‖2 ≤ δ. By assumption and by definition of φ∗ we have that T ∗φ = Tφ∗ = Tφ. Thus,
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τ (xφ(y)) = τ (φ(x)y) for x, y ∈M . Consider then the ucp map ψ : M →M defined by

ψ(x) = φ(x) + (1− (τ ◦ φ) (1)) EZ(x)

where EZ : M → Z ⊂M is the unique trace-preserving conditional expectation. Observe that TEZ =
eZ : L2(M) → L2(Z) ⊂ L2(M) is the orthogonal projection. Therefore we have that τ (xEZ(y)) =
τ (EZ(x)y) for every x, y ∈M . Thus τ (xψ(y)) = τ (ψ(x)y). Furthermore we have that (τ ◦ ψ) (1) = 1.
From this we deduce that

‖ψ (1)− 1‖22 = ‖ψ (1)‖22 + 1− 2Reτ (ψ (1))

= τ(ψ (1)2)− 1 ≤ τ (ψ (1))− 1 = 0.

Thus ψ is unital, which implies that ψ is trace-preserving.
Observe now that since ‖φ (1)− 1‖2 ≤ δ, we have |1− (τ ◦ φ) (1)| ≤ δ. Therefore for a projection

q ∈ Z and b ∈ qMq we have that

‖ψ(b)− φ(b)‖2 ≤ τ (q)1/2 δ ‖b‖ .

This easily gives the desired implication.
(3)⇒(4) Suppose that φ : M →M is a normal ucp A-bimodule map such that τ ◦ φ ≤ τ , φ (1) ≤ 1.

Observe then that ψ := 1
2 (φ+ φ∗) : M → M is a normal cp A-bimodule map satisfying ψ (1) ≤ 1,

τ ◦ ψ ≤ τ , ψ = ψ∗. Furthermore for a projection q ∈ Z and a unitary u ∈ qMq one has that

‖ψ (u)− u‖2 ≤
1

2
‖φ (u)− u‖2 +

1

2
‖φ∗ (u)− u‖2 ≤ 2 ‖φ (u)− u‖

1
2
2

by [18, Lemma 1.1.5]. Since every element x of qMq with ‖x‖ < 1 is a convex combination of unitaries,
this suffices; see also [16, Lemma 3].

(4)⇒(5) Let F be a finite subset of the unitary group of M containing 1, and δ > 0. Suppose that
H is an M -M -bimodule and ξ ∈M is an A-central and (F, δ)-central unit vector satisfying 〈ξ, ·ξ〉 ≤ τ
and 〈ξ, ξ·〉 ≤ τ . We can assume that ξ is cyclic. Consider the normal cp map φ : M → M associated
with (H, ξ). This is defined by φ(x) = L∗ξxLξ, where Lξ |x〉 = ξx. Then we have that φ is a normal
A-module cp map satisfying

(τ ◦ φ) (x) =
〈
1|L∗ξxLξ|1

〉
= 〈ξ|xξ〉 ≤ τ(x).

Furthermore

〈x|φ (1) |x〉 =
〈
x|L∗ξLξ|x

〉
= 〈ξx|ξx〉 = 〈ξ|ξxx∗〉 ≤ τ (xx∗) = ‖x‖22 = 〈x|x〉

and thus φ (1) ≤ 1. We have that (τ ◦ φ) (1) = 〈ξ|ξ〉 = 1 since ξ is a unit vector. For u ∈ F ,

‖φ (u)− u‖22 = ‖φ (u)‖22 + 1− 2Reτ (φ (u)∗ u)

≤ 2− 2Reτ (φ (u)∗ u)

= ‖uξ − ξu‖2 ≤ δ
By assumption, choosing F large enough and δ small enough guarantees that there exists a nonzero
projection p ∈ Z such that p ≤ p0 and, for every projection q ∈ Z such that q ≤ p and x ∈ qBq,

‖φ(x)− x‖2 ≤ τ (q)1/2 ‖x‖ ε. This implies that, for a unitary u ∈ U (qBq),

‖uξ − ξu‖2 = (τ ◦ φ) (q) + τ (q)− 2Reτ (φ (u)∗ u)

≤ 2τ (q)− 2Reτ (φ (u)∗ u)

= 2Reτ (q (q − quφ (u)∗))

≤ 2τ (q)1/2 ‖q − quφ (u)∗‖2
≤ 2τ (q) ε.

Therefore ‖uξ − ξu‖ ≤ τ (p)1/2 2ε1/2 for a unitary u in qBq. Since every element b ∈ qBq with ‖b‖ < 1
is a convex combination of unitaries, this concludes the proof.

(5)⇒(1) Obvious. �
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Remark 3.4. Proposition 3.3 shows that, if M is a von Neumann algebra and B ⊂M is a subalgebra,
then B ⊂ M is rigid in the sense of [18, Definition 4.2.1] if and only if C1 ⊂ C1 ⊂ B ⊂ M is rigid in
the sense of Definition 3.2; see also [16, Theorem 1] and [10, Theorem 3.1]. Furthermore, B is co-rigid
in the sense of [18, Remark 5.6.1] if and only if C ⊂ B ⊂ M ⊂ M is rigid in the sense of Definition
3.2.

3.4. von Neumann algebra characterization of property (T) for groupoids. Now we use the
characterization of property (T) for groupoids from Theorem 2.13 together with the characterization
of rigidity for inclusions of von Neumann algebras from Proposition 3.3 to give a characterization of
property (T) for groupoids in terms of the corresponding groupoid von Neumann algebra.

Theorem 3.5. Suppose that G is a discrete pmp groupoid, and K ≤ H ≤ G are subgroupoid. Assume
that H is ergodic. Let X be the common unit space of K,H,G. The following assertions are equivalent:

(1) K ≤ H ≤ G has property (T);
(2) for every ε > 0 and nonzero projection p0 ∈ L∞ (X) there exist a finite subset F of L(G) and

δ > 0 such that for every Hilbert M -M -bimodule H with an (F, δ)-central and L(K)-central
tracial unit vector ξ ∈ H there is a nonzero projection p ∈ Z and an H-central vector η ∈ H

such that p ≤ p0 and ‖qη − qξ‖ ≤ τ (q)1/2 ε for every projection q ∈ L∞ (X) such that q ≤ p;
(3) the inclusion L∞ (X) ⊂ L(K) ⊂ L(H) ⊂ L(G) is rigid;
(4) for every ε > 0 there is a finite subset F of L(G) and δ > 0 such that for any Hilbert M -M -

bimodule H with an (F, δ)-central and L(K)-central tracial unit vector ξ ∈ H there is a nonzero

projection p ∈ L∞ (X) such that ‖xξ − ξx‖ ≤ τ (p)1/2 ‖x‖ ε for x ∈ pL(H)p.

Proof. (1)⇒(2) Suppose that K ≤ H ≤ G has property (T). Fix ε > 0 and a nonzero projection
p0 ∈ L∞ (X). Then p0 can be seen as the characteristic function of some Borel subset B of X. Let
F be a finite subset of [G] and δ > 0 be obtained from ε and B via Item (7) of the characterization
of property (T) for triples of groupoids provided by Theorem 2.13. Let now H be an L(G)-bimodule
with an L(K)-central and (F, δ)-central tracial unit vector ξ0 ∈ L. We can assume that ξ0 is a cyclic
vector for H. The assignment a 7→ (ξ 7→ aξ) defines a normal *-representation of L∞ (X) on H. Thus
there is a Hilbert bundle H = (Hx)x∈X such that H = L2 (X,H) and, for ξ = (ξx)x∈X ∈ L2 (X,H)
and a = (ax)x∈X ∈ L∞ (X), aξ = (axξx)x∈X ; see [12, Theorem 14.2.1] or [22, Proposition F.26].

Suppose now that t ∈ [G] and a ∈ L∞ (X). Observe that uta = θt(a)ut where θt(a) =
(
as(xt)

)
x∈X ∈

L∞ (X). Therefore we have that utaξu
∗
t = θt(a)utξu

∗
t . This shows that the operator ξ 7→ utξu

∗
t on

L2 (X,H) intertwines the normal *-representations a 7→ (ξ 7→ aξ) and a 7→ (ξ 7→ θt(a)ξ) of L∞ (X)
on H. Therefore ξ 7→ utξu

∗
t is a decomposable operator; see [21, Theorem 7.10], [22, Theorem F.21],

or [7, Subsection 2.5]. This means that exists a section x 7→ πxt ∈ B
(
Hs(xt), Hx

)
such that utξu

∗
t =(

πxtξs(xt)
)
x∈X for ξ ∈ L2 (X, (Hx)x∈X); see [21, Definition 7.9]. By considering such a decomposition

when t varies within a countable dense subgroup of [G], and by the essential uniqueness of such a
decomposition [22, Proposition F.33], one obtains a representation γ 7→ πγ of G on H such that
utξu

∗
t = [π]t ξ for every t ∈ [G] and ξ ∈ L2 (X,H). Since by assumption ξ0 is L(K)-central, we have

that ξ0 is K-invariant. Furthermore since ξ0 is (F, δ)-central, we have that ξ0 is (F, δ)-invariant for π.
Therefore by the choice of F and δ, there exists a non-null Borel subset A of X and an element η of
L2 (X,H) such that η is H-invariant and

∥∥ηx − ξ0
x

∥∥ ≤ ε for every x ∈ A. The vector η together with
the characteristic function p of A witness that the desired conclusion holds.

(2)⇒(3) Suppose that M is a tracial von Neumann algebra, Z ⊂ M is a subalgebra, q ∈ Z is a
projection, and H is an M -M -bimodule. Consider a Z-central unit vector ξ ∈ H and an M -central

vector η ∈ H such that ‖qξ − qη‖ ≤ τ (q)1/2 ε. Then for every unitary u in qMq one has that

‖uξ − ξu‖ ≤ ‖uξ − uη‖+ ‖ξu− ηu‖ ≤ 2 ‖qξ − qη‖ .

One can easily prove the implication (2)⇒(3) using this observation.
(3)⇒(4) This is obvious.
(4)⇒(1) Suppose that (4) holds. We verify that Item (8) of Theorem 2.13 holds. To this purpose,

fix ε > 0. We want to find a finite subset Q of [G] and δ > 0 such that, for every normalized
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K-invariant function of positive type ϕ on G such that maxt∈Q
∫
x∈X |ϕ (xt)− 1|2 dµ(x) ≤ δ, there

is a non-null Borel subset A of X such that Re (1− ϕ(γ)) ≤ ε for a.e. γ ∈ AHA. Consider a
finite subset F of L(G) and δ > 0 with the property that, for every trace-preserving ucp L(K)-
bimodule map φ : L(G)→ L(G) satisfying maxx∈F ‖φ(x)− x‖2 ≤ δ, there exists a nonzero projection

p ∈ L∞ (X) such that ‖φ(x)− x‖2 ≤ τ (p)1/2 ε ‖x‖ for x ∈ pL(H)p. By Kaplanski’s density theorem
[4, I.9.1.3], we can assume without loss of generality that there exists a finite subset Q of [G] such
that F = {ut : t ∈ Q} ⊂ L(G). Consider a K-invariant normalized function of positive type ϕ on
G. Suppose that maxt∈Q

∫
x∈X |ϕ (xt)− 1| dµ(x) ≤ δ. Let φ : L(G) → L(G) be the trace-preserving

ucp L(K)-bimodule map associated with ϕ as in Proposition 3.1. Observe that, for every t ∈ Q,
φ (ut) = ϕ(t)ut, where ϕ(t) ∈ L∞ (X) is the function x 7→ ϕ (xt). Therefore for t ∈ Q we have that

‖φ (ut)− ut‖2 = ‖ϕ(t)ut − ut‖2 ≤ ‖ϕ(t)− 1‖2 ≤ δ.
Therefore by assumption there exists a nonzero projection p ∈ L∞ (X) such that for every projection

q ∈ L∞ (X) such that q ≤ p one has that ‖φ(x)− x‖2 ≤ τ (q)1/2 ε ‖x‖ for x ∈ qL(H)q. Let now A ⊂ X
be a Borel subset such that p is the characteristic function of A. Then we have that, for σ ∈ [AHA],
uσ ∈ pL(H)p, τ (p) = µ(A), and hence

µ(A)ε2 ≥ ‖φ (uσ)− uσ‖22 = ‖ϕ(σ)− 1‖22 =

∫
x∈A
|ϕ (xσ)− 1|2 dµ.

Since this holds for every σ ∈ [AHA], we conclude that |ϕ(γ)− 1| ≤ ε for a.e. γ ∈ AHA. This shows
that Item (8) of the characterization of property (T) for triples of groupoids (Theorem 2.13) holds.
This concludes the proof. �
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