The choice of target pocket is a key step in a drug discovery campaign. This step can be supported by druggability prediction. In the literature, druggability prediction is often approached as a two-class classification task that distinguishes between druggable and non-druggable (or less druggable) pockets (or voxels). Apart from obvious cases, however, the non-druggable class is conceptually ambiguous. This is because any pocket (or target) is only non-druggable until a drug is found for it. It is therefore more appropriate to adopt a one-class approach, which uses only unambiguous information, namely, druggable pockets. Here, we propose using the import vector domain description (IVDD) algorithm to support this task. IVDD is a one-class probabilistic kernel machine that we previously introduced. To feed the algorithm, we use customized DrugPred descriptors computed via NanoShaper. Our results demonstrate the feasibility and effectiveness of the approach. In particular, we can remove or mitigate biases chiefly due to the labeling.
Riccardo Aguti, Erika Gardini, Martina Bertazzo, Sergio Decherchi, Andrea Cavalli (2022). Probabilistic Pocket Druggability Prediction via One-Class Learning. FRONTIERS IN PHARMACOLOGY, 13, 308-323 [10.3389/fphar.2022.870479].
Probabilistic Pocket Druggability Prediction via One-Class Learning
Riccardo AgutiCo-primo
;Erika GardiniCo-primo
;Martina Bertazzo;Andrea CavalliUltimo
2022
Abstract
The choice of target pocket is a key step in a drug discovery campaign. This step can be supported by druggability prediction. In the literature, druggability prediction is often approached as a two-class classification task that distinguishes between druggable and non-druggable (or less druggable) pockets (or voxels). Apart from obvious cases, however, the non-druggable class is conceptually ambiguous. This is because any pocket (or target) is only non-druggable until a drug is found for it. It is therefore more appropriate to adopt a one-class approach, which uses only unambiguous information, namely, druggable pockets. Here, we propose using the import vector domain description (IVDD) algorithm to support this task. IVDD is a one-class probabilistic kernel machine that we previously introduced. To feed the algorithm, we use customized DrugPred descriptors computed via NanoShaper. Our results demonstrate the feasibility and effectiveness of the approach. In particular, we can remove or mitigate biases chiefly due to the labeling.File | Dimensione | Formato | |
---|---|---|---|
fphar-13-870479.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.