In this paper we study Dirac-Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.

Borrelli W., Maalaoui A., Martino V. (2023). Conformal Dirac–Einstein equations on manifolds with boundary. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 62(1), 1-52 [10.1007/s00526-022-02354-w].

Conformal Dirac–Einstein equations on manifolds with boundary

Martino V.
2023

Abstract

In this paper we study Dirac-Einstein equations on manifolds with boundary, restricted to a conformal class with constant boundary volume, under chiral bag boundary conditions for the Dirac operator. We characterize the bubbling phenomenon, also classifying ground state bubbles. Finally, we prove an Aubin-type inequality and a related existence result.
2023
Borrelli W., Maalaoui A., Martino V. (2023). Conformal Dirac–Einstein equations on manifolds with boundary. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 62(1), 1-52 [10.1007/s00526-022-02354-w].
Borrelli W.; Maalaoui A.; Martino V.
File in questo prodotto:
File Dimensione Formato  
2204.00031.pdf

Open Access dal 06/11/2023

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 679.97 kB
Formato Adobe PDF
679.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/911956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact