In this note, we establish when the bivariate discrete Schurconstant models possess the Sibuya-type aging property. It happens that the corresponding class is large, solving the counterpart of classical Sincov’s functional equation on the set of nonnegative integers.

Kolev, N., Mulinacci, S. (2022). Probability solutions of the Sincov’s functional equation on the set of nonnegative integers. REVISTA BRASILEIRA DE PROBABILIDADE E ESTATÍSTICA, 36(4 (December)), 685-691 [10.1214/22-BJPS548].

Probability solutions of the Sincov’s functional equation on the set of nonnegative integers

Mulinacci, Sabrina
2022

Abstract

In this note, we establish when the bivariate discrete Schurconstant models possess the Sibuya-type aging property. It happens that the corresponding class is large, solving the counterpart of classical Sincov’s functional equation on the set of nonnegative integers.
2022
Kolev, N., Mulinacci, S. (2022). Probability solutions of the Sincov’s functional equation on the set of nonnegative integers. REVISTA BRASILEIRA DE PROBABILIDADE E ESTATÍSTICA, 36(4 (December)), 685-691 [10.1214/22-BJPS548].
Kolev, Nikolai; Mulinacci, Sabrina
File in questo prodotto:
File Dimensione Formato  
Sincov_discrete.pdf

accesso aperto

Descrizione: Ultima versione accettata
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 222.22 kB
Formato Adobe PDF
222.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/911467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact