In this note, we establish when the bivariate discrete Schurconstant models possess the Sibuya-type aging property. It happens that the corresponding class is large, solving the counterpart of classical Sincov’s functional equation on the set of nonnegative integers.
Kolev, N., Mulinacci, S. (2022). Probability solutions of the Sincov’s functional equation on the set of nonnegative integers. REVISTA BRASILEIRA DE PROBABILIDADE E ESTATÍSTICA, 36(4 (December)), 685-691 [10.1214/22-BJPS548].
Probability solutions of the Sincov’s functional equation on the set of nonnegative integers
Mulinacci, Sabrina
2022
Abstract
In this note, we establish when the bivariate discrete Schurconstant models possess the Sibuya-type aging property. It happens that the corresponding class is large, solving the counterpart of classical Sincov’s functional equation on the set of nonnegative integers.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Sincov_discrete.pdf
accesso aperto
Descrizione: Ultima versione accettata
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione
222.22 kB
Formato
Adobe PDF
|
222.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.