Modeling and understanding users interests has become an essential part of our daily lives. A variety of business processes and a growing number of companies employ various tools to such an end. The outcomes of these identification strategies are beneficial for both companies and users: the former are more likely to offer services to those customers who really need them, while the latter are more likely to get the service they desire. Several works have been carried out in the area of user interests identification. As a result, it might not be easy for researchers, developers, and users to orient themselves in the field; that is, to find the tools and methods that they most need, to identify ripe areas for further investigations, and to propose the development and adoption of new research plans. In this study, to overcome these potential shortcomings, we performed a systematic literature review on user interests identification. We used as input data browsing tab titles. Our goal here is to offer a service to the readership, which is capable of systematically guiding and reliably orienting researchers, developers, and users in this very vast domain. Our findings demonstrate that the majority of the research carried out in the field gathers data from either social networks (such as Twitter, Instagram and Facebook) or from search engines, leaving open the question of what to do when such data is not available.
Farina M, Kostin M, Succi G (2022). Interest identification from browser tab titles: A systematic literature review. COMPUTERS IN HUMAN BEHAVIOR REPORTS, 7, 1-16 [10.1016/j.chbr.2022.100187].
Interest identification from browser tab titles: A systematic literature review
Succi G
2022
Abstract
Modeling and understanding users interests has become an essential part of our daily lives. A variety of business processes and a growing number of companies employ various tools to such an end. The outcomes of these identification strategies are beneficial for both companies and users: the former are more likely to offer services to those customers who really need them, while the latter are more likely to get the service they desire. Several works have been carried out in the area of user interests identification. As a result, it might not be easy for researchers, developers, and users to orient themselves in the field; that is, to find the tools and methods that they most need, to identify ripe areas for further investigations, and to propose the development and adoption of new research plans. In this study, to overcome these potential shortcomings, we performed a systematic literature review on user interests identification. We used as input data browsing tab titles. Our goal here is to offer a service to the readership, which is capable of systematically guiding and reliably orienting researchers, developers, and users in this very vast domain. Our findings demonstrate that the majority of the research carried out in the field gathers data from either social networks (such as Twitter, Instagram and Facebook) or from search engines, leaving open the question of what to do when such data is not available.File | Dimensione | Formato | |
---|---|---|---|
Succi.J119.InterestIdentificationFromBrowserTabTitlesAsystematicliteraturereview.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.