Dark Matter could be a composite state of a confining sector with an approximate scale symmetry. We consider the case where the associated pseudo-Goldstone boson, the dilaton, mediates its interactions with the Standard Model. When the confining phase transition in the early universe is supercooled, its dynamics allows for Dark Matter masses up to 106 TeV. We derive the precise parameter space compatible with all experimental constraints, finding that this scenario can be tested partly by telescopes and entirely by gravitational waves.
Baldes I., Gouttenoire Y., Sala F., Servant G. (2022). Supercool composite Dark Matter beyond 100 TeV. JOURNAL OF HIGH ENERGY PHYSICS, 2022(7), 1-80 [10.1007/JHEP07(2022)084].
Supercool composite Dark Matter beyond 100 TeV
Sala F.;
2022
Abstract
Dark Matter could be a composite state of a confining sector with an approximate scale symmetry. We consider the case where the associated pseudo-Goldstone boson, the dilaton, mediates its interactions with the Standard Model. When the confining phase transition in the early universe is supercooled, its dynamics allows for Dark Matter masses up to 106 TeV. We derive the precise parameter space compatible with all experimental constraints, finding that this scenario can be tested partly by telescopes and entirely by gravitational waves.File | Dimensione | Formato | |
---|---|---|---|
JHEP07(2022)084.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
6.18 MB
Formato
Adobe PDF
|
6.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.