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1 Introduction

In the coming years we will be flooded by data offering new windows on particle physics at
high energy scales. Telescopes such as CTA [1] and LHAASO [2] will collect, for the first
time, γ rays at and above 100TeV, and KM3NeT [3] will explore a similar energy range
in upward going neutrinos from the Galactic Centre. Underground experiments for Dark
Matter (DM) direct detection, such LZ [4] and DARWIN [5], will test new parameter regions
of heavy DM mass. Further in the future, interferometers such as LISA [6], DECIGO [7],
and the Einstein Telescope [8] will be sensitive to gravitational waves (GWs) generated at
(currently unexplored) high temperatures in the early universe, thus offering yet another
beacon on physics at high energies. These prospects are particularly exciting as they
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could unveil some of the current mysteries of Nature at a fundamental level. It appears
unavoidable that some physics beyond the Standard Model (BSM) lives at high energy
scales, given the success of the Standard Model (SM) in explaining physics below a TeV.

In comparison with the information extracted from colliders, these upcoming experi-
ments will offer indirect information. However, they are highly complementary with each
other. It is therefore important to cross-correlate the signals that any given BSM sector
could yield in each of these experiments. It is likely that this would be the only way to tell
apart different models, which can easily appear indistinguishable in a single dataset. In
this paper we take a step in this direction. We determine how telescopes, underground labs
and GW interferometers interplay in testing a concrete class of heavy DM models, that are
motivated by a wide picture of solutions to other problems of the SM.

We will consider Dark Matter as a composite state of a new confining sector, which
acquires mass precisely at the associated confining phase transition in the early universe.
From the DM point of view, new strongly coupled sectors are appealing because they are
associated with global symmetries of high quality below the confinement scale. These
symmetries imply the existence of stable or very long-lived composite states, much like
the proton in QCD, and therefore render confining sectors a natural starting point in
building DM models, see e.g. [9]. This property also makes confining sectors useful for BSM
more generally, for example they can solve the quality problem of the QCD axion [10, 11].
Such sectors have also attracted enormous attention because they dynamically generate
a mass scale via dimensional transmutation, when their characteristic coupling runs from
perturbative values in the UV to large values in the IR. This adds to their appeal for DM
model building, as they provide an explanation for the origin of the DM mass. Independently
of DM, strongly-coupled sectors are ubiquitous in extensions of the SM because dimensional
transmutation enables one to obtain large and stable hierarchies among mass scales. This
has, for example, been used to address the hierarchy problem in composite [12, 13], Twin
Higgs [14–17] and relaxion models [18, 19] and to explain the separation between the
supersymmetry breaking and the Planck scale [20, 21]. Needless to say, a new confining
sector could address several of the SM issues mentioned above at the same time.

Here we will focus on strongly-coupled sectors where an approximate scale symmetry is
spontaneously broken at confinement, so that a light pseudo-Goldstone boson exists in the
spectrum, the dilaton [22]. When the explicit breaking of conformal invariance is sufficiently
small, the dilaton can be significantly lighter than the confinement scale set by the dilaton
vacuum expectation value (vev). As the dilaton vev sets all scales in the strong sector, if
the dilaton is light, other dynamical fields can be integrated out and the confinement phase
transition can be described in terms of the dilaton vev only. In these models the confining
phase transition (PT) in the early universe is supercooled, namely bubble nucleation is
so delayed that the radiation energy density becomes smaller than the vacuum energy, so
that the universe undergoes a stage of inflation until the PT ends [23]. Supercooled PTs
have been predicted in the 5D holographic warped description [24–36], which is dual to
nearly-conformal 4D theories [37–45], and have attracted a lot of interest recently. Unique
dynamical features of any such PT were pointed out and modelled in [45]: fundamental
quanta of the confining sector, upon being swallowed by the expanding bubbles, connect to
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Figure 1. The abundance of scalar composite DM is reproduced along the red dashed line in the
case of standard freeze-out, and along the blue lines in presence of a supercooled phase-transition,
for different values of the nucleation temperature Tnuc. See eq. (4.18) and eq. (4.19) for a description
of the sub-freeze-out and sub-freeze-in regimes. See figure 6 for analogous figures with experimental
limits and sensitivities superimposed. This figure has been drawn for Z = 5 (defined in section 2.1)
and BR = 10−6 (defined in eq. (4.16)). If the reheating temperature is smaller than the freeze-out
one TRH . TFO, then the phase transition results in a slightly different DM abundance than the
standard case even for vanishing supercooling (large Tnuc), cf. eq. (4.18), so that the red and the
leftmost blue lines do not overlap.

their walls via strings which then fragment, producing high-energy populations of hadrons.
These dynamics have several important effects, for example the relic abundance of composite
states, which acquire mass at the PT, is affected by many orders of magnitudes with respect
to the (wrong) treatment where these effects are ignored.

In the present work we build upon the results of [45] and apply them to a concrete
model of composite Dark Matter which interacts with the SM through the dilaton portal,
thus generalizing, extending and updating former studies in refs. [46–50]. We offer a preview
of our result for the DM abundance in figure 1, where one can appreciate that a wide
parameter space opens up for DM heavier than what predicted by standard freeze-out.

This paper is organised as follows. In section 2 we introduce a light dilaton, which
controls the physics of the phase transition, and calculate the associated nucleation tem-
perature. In section 3 we assume that the dilaton mediates the interactions between DM
and the SM, which allows us to make precise statements regarding the DM abundance and,
in section 4, to unify its treatment with that of the PT. It also allows us to explore the
complementarity among the myriad experimental signatures of this scenario, which were
not addressed in [45]: we explore DM signals in sections 3.4, 3.5 and GW ones in section 5.
We conclude in section 6, and complement this paper with a series of technical results in
the various appendices.
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2 Supercooling from a nearly-conformal sector

Spontaneous breaking of scale invariance. We assume that, at high-energies, the
theory is described by a strongly-interacting conformal field theory (CFT) plus a small
explicit breaking of scale invariance, which we parameterise with the slightly relevant
operator εOε, with scaling dimension d = 4 + γε . 4 and ε� 1 in the UV. We assume that
ε grows at lower energies, until the CFT is spontaneously broken and a confinement scale f
is generated. Similarly to QCD, we expect this to give rise to a tower of resonances of mass
of order f .

EFT described by the dilaton. We further assume that the dilaton χ, the pseudo-
Goldstone boson associated to the spontaneous breaking of scale invariance, is lighter
than these resonances. It is then possible to integrate them out and describe the phase
transition in terms of the dilaton field only. A model building effort is required to obtain a
parametrically light dilaton in strongly-coupled theories [51–57]. In this paper we will not
make progress in this direction, and we will limit ourselves to dilaton masses mσ & f/5.

Connection to the lattice. On the lattice side, evidence for a light dilaton with a mass
mσ ' 0.5mρ where ρ is the lightest vector meson1 have been shown in SU(3) gauge theory
with Nf = 8 massless Dirac fermions in the fundamental representation [59] or with Nf = 2
massless Dirac fermions in the sextet (two index symmetric) representation [60, 61]. In that
context, see the studies [62–64] where free parameters of some dilaton EFT are adjusted on
the results of the lattice simulations.

2.1 The dilaton potential and interactions

pNGB of scale invariance. The dilaton is defined by its transformation rule, χ′(x)→
λχ′(x/λ), under dilatations xµ → xµ/λ. The prime index is to account for the option that
the kinetic term of χ′ is non-canonically normalised, a possibility which turns out to have
phenomenological relevance, and which we therefore treat in some detail. A non-canonically
normalised kinetic term is for example a well known prediction of 5D duals of our 4D CFT
picture (see e.g. [24–26, 65, 66]). We review such duality in appendix A and stick to a
purely 4D description in the rest of the exposition.

Scale invariance allows one to write a potential term of the form χ′4, which is either
unbounded from below or implies 〈χ′〉 = 0, with no pNGB in the spectrum. The slightly
relevant coupling ε, which comes from a small explicit breaking of the scale invariance,
generates an additional potential for the dilaton, ε(χ′)χ′4+γε , that in turn can lead to
spontaneous symmetry breaking 〈χ′〉 6= 0. We then parametrize the dilaton field as

χ′(x) = fe
σ′(x)
f (2.1)

where σ′(x) transforms non-linearly under dilatations, σ′(x)→ σ′(λx) + f log λ. Assuming
Oε stays close-to-marginal till confinement,2 |γε| � 1, one has ∂ε/∂ logµ ' γε ε, where µ

1If the scalar σ is indeed the dilaton, we expect mσ/mρ to go to zero in the large volume limit [58].
2This does not happen in QCD, where |βαs | ∼ O(1) at confinement, and where indeed there is no evidence

for a light dilaton. See [53, 54] for models that achieve |βε| � 1 (or |γε| � 1, equivalent for our discussion).
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is the renormalization scale. As anticipated, ε grows in the IR3 until scale invariance gets
spontaneously broken. We parameterise the dilaton potential as

V (χ′) = cχg
2
χχ
′4
[
1− 1

1 + γε/4

(
χ′

f

)γε]
, (2.2)

where cχ is an order one parameter and gχ & 1 is a coupling, about which we give more
details in appendix A. We omit for simplicity a constant term ensuring the smallness of the
cosmological constant. This potential implies 〈χ′〉 = f .

Dilaton EFT. The field χ′ is responsible for the generation of the masses mψ of the
composite resonances ψ (and via the Higgs also of the SM fields, in CHMs). We conveniently
employ χ′ as a compensator for any non-marginal operator in the Lagrangian [67]. All in
all, accounting for the possibility of a non-canonical normalisation Z 6= 1 of the kinetic
term (Z2 = 24 in the 5D dual reviewed in appendix A), the Lagrangian for χ′ reads

L′χ = Z2

2 (∂µχ′)2 − V (χ′)− yψψ̄ψχ′, (2.3)

where we have introduced the coupling yψ such that

mψ = yψf. (2.4)

Canonically normalized dilaton. We define the canonically normalised compensator
field χ and the dilaton field σ as

χ ≡ Zχ′, and σ ≡ χ− Zf . (2.5)

This leads to the potential

V (χ) = cχ
Z4 g

2
χχ

4
[
1− 1

1 + γε/4

(
χ

Zf

)γε]
, (2.6)

with a minimum at 〈χ〉 = Z f . The dilaton interactions read

yψψ̄ψ
χ

Z
= mψψ̄ψ

(
1 + σ

Zf

)
, (2.7)

from which it is manifest that the interactions of σ are suppressed by a factor Z with respect
to the naive expectation mψ/f .4 Since the value of Z sizeably impacts the phenomenology
presented in this paper, in the main text we will show results for different values of this
parameter.

3Subleading terms in the evolution of ε can be parametrized as ∂ε/∂ log µ ' γε + cε ε
2/g2

χ, where cε is
a small parameter that e.g. in CHMs receive contributions from loops of partially-elementary SM fields.
The new term tames the growth of ε in the IR, causing it to flow to the IR fixed point εIR = −γεg2

χ/cε.
Subleading terms do not play a crucial role in our discussion and we do not explore them further here, the
interested reader can find more details in [39].

4Had we reabsorbed Z in the definition of f , as f ′ = Z f , then Z would have appeared in the definition
of the masses in terms of f ′, and the physics would have of course not changed.
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Dilaton mass. Remembering γε < 0, we obtain for the dilaton mass

m2
σ = ∂2

∂σ2V
(
χ(σ)

)∣∣
σ=0 = −4 γε cχg2

χ

f2

Z2 . (2.8)

The smallness of mσ is then tied to the smallness of the anomalous dimension γε at
the confinement scale. Note that in the limit where |γε| � 1, the dilaton potential at
zero-temperature in eq. (2.6) reduces to the Coleman-Weinberg potential [68]

V (χ) ' m2
σ

Z2f2
χ4

4 log
(

χ

e1/4Zf

)
. (2.9)

Vacuum energy. Finally, the vacuum energy in the unbroken phase reads

∆V = V (χ = 0)− V (χ = Zf) '
(
Zmσf

4

)2
. (2.10)

This defines the quantity cvac in [45]. If the Higgs is also a condensate of the same strong
sector, as in CHM, then one has ∆V = (Zmσf/4)2 + (mhvH)2/8, where mh = 125GeV is
the physical Higgs mass and vH ' 246GeV its vev. Given the experimental limits on f and
the dilaton masses we consider, the Higgs contribution is always negligible with respect to
the one of eq. (2.10).

Consequences of non-canonical kinetic term. To summarise, a non-canonical kinetic
term for the dilaton has the effect of

• suppressing its physical mass,

• suppressing its couplings,

• enhancing the difference in potential energy between the false and the true vacuum.

2.2 Finite-temperature corrections

Deconfined phase. In the previous section, we discussed the potential of the dilaton
in the confined phase which we expect to be the thermodynamically most favorable phase
when the temperature is notably below gχf .5 However, when the temperature is notably
above gχf , we expect the deconfined phase to be thermodynamically most favorable. The
EFT contains only the dilaton and the SM, so it is inappropriate to use it to describe the
departure from the confined phase to the deconfined phase at T ∼ O(gχf), since we expect
the excitation of heavier bound states as well as their deconfined constituents to play an
important role at this temperature and above. Instead of looking for a finer description of the
strong sector, which would be very model dependent, we assume that we can approximate
the deconfined phase by an N = 4 SU(N) super Yang-Mills which in the large N limit is

5The appearance of gχ here can be understood by restoring Planck’s constant: [gχ] = ~−1/2 and
[f ] = ~1/2E, such that gχf has the dimension of an energy scale.
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dual to an AdS-Schwarzschild space-time [69, 70]. This is known to have free energy [24]6

Fdec = −π
2

8 N
2T 4. (2.11)

Confined phase at finite-temperature. Without a precise UV description, we are
unable to determine the potential for 0 < χ < T/gχ. Nevertheless, we follow [25, 39] and
proceed by assuming that the dilaton still approximately exists in this regime, and that its
potential can be estimated. With regard to the thermal corrections, we assume that they
arise from the N2 bosons of the CFT in the deconfined phase and model them as [25, 39]

VT(χ, T ) =
∑

CFT bosons

nT 4

2π2 JB

(
m2

CFT

T 2

)
, (2.12)

where each bosonic state comes with a degeneracy factor n, and mass mCFT = gχχ/Z. The
thermal function JB is given by

JB(x) =
∫ ∞

0
dk k2 log

[
1− e−

√
k2+x

]
. (2.13)

In order to recover the free energy eq. (2.11) in the deconfined phase, we set

∑
CFT bosons

n = 45N2

4 . (2.14)

Effective potential. Combining the above, the finite-temperature effective potential for
the dilaton is

V (χ, T ) = V (χ) + VT(χ, T ), (2.15)

with V (χ) and VT(χ, T ) defined in eq. (2.6) and eq. (2.12). Note that we have neglected
the thermal corrections induced by the light degrees of freedom in the confined phase, as
these will also be light in the deconfined phase, and irrelevant for our purposes.

2.3 Computation of the nucleation temperature

Tunneling rate. The phase transition, being first order, completes through bubble
nucleation via quantum or thermal tunneling. The decay rate of the false vacuum is given
by [71–75]

Γ(T ) ' max
[
T 4
(
S3

2πT

)3/2
Exp (−S3/T ) , 1

R4
c

(
S4
2π

)2
Exp (−S4)

]
, (2.16)

where Rc is the bubble radius, and S3 and S4 are the three and four dimensional Euclidean
actions of the O(3) and O(4) symmetric tunneling solutions respectively. The former is

6Note that the free-energy of an interacting gluon gas is lower than the free-energy of a non-interacting
gluon gas, F = −π2

90 2N2T 4, by a factor of ∼ 5, in conformity with the intuition that switching on the strong
interaction would stabilize the phase. Note that we also neglect the number of degrees of freedom gSM of
the SM and of the techni-quarks gq compared to the effective number of the techni-gluons 45

4 N
2, namely,

−π
2

90 (gSM + gq + 45
4 N

2)T 4 ' −π
2

8 N
2T 4.
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thermally-induced while the later is purely quantum. The S3 and S4 bounce actions read

S3 = 4π
∫
dr r2

(1
2φ
′(r)2 + V (φ(r))

)
, S4 = 2π2

∫
dr r3

(1
2φ
′(r)2 + V (φ(r))

)
(2.17)

where V (φ) is the finite temperature effective potential and φ(r) is the field configuration
which interpolates between the two asymptotic vacua. Extremization of the action leads to
the Euclidean equation of motion

φ′′(r) + d− 1
r

φ′(r) = dV

dφ
, (2.18)

with boundary conditions

φ′(0) = 0, and lim
r→∞

φ(r) = 0. (2.19)

The phase transition first becomes energetically allowed at the critical temperature,

Tc =
(
Z mσf√

2πN

)1/2
, (2.20)

when the two minima are degenerate.

Nucleation. We consider the phase transition to take place when the number of bubble
nucleations per Hubble volume and per Hubble time is of ∼ O(1),7

Γ(Tnuc) ' H(Tnuc)4. (2.21)

This occurs at an associated Scrit, typically ∼ 100 for the present scenario. We determine
Tnuc in two different ways.

• Numerical approach. First of all, we solve the bounce action numerically using an
“undershoot-overshoot” method. Nucleation temperatures computed numerically,
showing the extreme supercooling achievable with light dilaton masses in this model,
are shown in figure 2.

• Analytical approach. To aid our understanding, we also derive an analytical expression
of the nucleation temperature. Restricting ourselves to the S4 action for simplicity,
we find (

Tnuc
Tc

)4
∝ Exp

(
−c∗

8π2

Scrit

Z2f2

m2
σ

)
, (2.22)

where c∗ ' 2. We refer the reader to appendix B for the derivation, together with
further details on the O(3) bounce and the minimal nucleation temperature, below
which the universe remains forever stuck in the false vacuum.

From figure 2, or eq. (2.22), we see that for small dilaton mass, or equivalently for small
anomalous coupling |γε|, the nucleation temperature is exponentially suppressed, thus
leading to a large amount of supercooling. The origin of this behaviour can be traced back
to the shallowness of the zero-temperature potential at small dilaton field values.

7We refer to appendix B.4 for justification, following a comparison of Tnuc to the temperature at which
bubbles percolate.
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Figure 2. Nucleation temperature, solution of eq. (2.21), after numerically solving the bounce
action, as a function of the dilaton mass for different values of the kinetic rescaling factor, Z, and
strong sector group SU(N) rank. We see that strong supercooling is associated with a light dilaton.
We set f = 10TeV, cχ = 1, and a dilaton-as-glueball inspired gχ = 4π/N . With this scaling of gχ,
increasing N leads to an increase in γε, which can counteract the thermal effects of the additional
CFT bosons and lead to a weaker transition. For the same reason, large choices of Z, N , and mσ

can also invalidate the perturbative analysis, which is why we restrict ourselves to smaller N for
large Z. On the right axis we show approximate values for the number of e-foldings Ne, where we
use eq. (4.7) with mσ = 0.5 f , N = 5 and Z = 2 for definiteness (so the difference between the
approximate Ne and the actual Ne is < 1 for the entire plot).

Catalysis through QCD. Finally, we note that for extreme supercooling, QCD effects
may enter the effective potential [30, 31, 40, 44, 76, 77] and interestingly can trigger the
new confinement phase transition. Therefore, there could be some non-trivial connection
between the nucleation temperature and QCD effects. The inclusion of these corrections
induces a certain degree of model dependence, due to the altered running of the QCD gauge
coupling in the presence of the CFT states [30, 40] leading to two QCD phase transitions
in the cosmological history and a modified QCD confinement scale at early times. The first
confinement of QCD may then occur at a value far below its value today TQCD � 100MeV.
Note that even once QCD confines, leading to a reduction in the barrier separating the
phases, the tunnelling rate can remain suppressed so that supercooling continues to some
much lower temperature [30, 77]. We will not attempt to capture these effects here, but
we keep in mind the possibility that our determination of Tnuc may be altered, and also
that there may be an underlying reason for Tnuc to be related to the QCD scale (that has
interesting phenomenological implications, such as enabling cold baryogenesis [78] and the
use of strong CP violation for baryogenesis [79]).
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3 Dilaton-mediated composite DM

3.1 DM candidates in composite Higgs

We consider DM, which we denote η, as being a resonance of the composite sector com-
municating to the SM through the dilaton portal [46–50]. Numerous other proposals of
DM as a resonance of a composite sector exist in the literature, and we refer the interested
reader to the review [80]. In this paper, we focus on the case where DM interacts with
the SM through the dilaton only. This is a consistent assumption if we do not consider
processes at energy scales larger than the confining one. Therefore it is fully justified for
the direct detection and dilaton collider phenomenology that we will study later. Coming
to the annihilation cross sections, the relevant energies are of the order of the DM mass,
and we comment on the validity of our assumption in section 3.3.

We define here all the five models that we will study throughout our paper. To keep
the material easy to read, when presenting summary plots of the phenomenological results
we will restrict ourselves to two of the models in the main text: scalar DM, and pNGB DM
with shift symmetry broken by the top quark. The phenomenologies of the other three
models (fermion DM, vector DM, and pNGB DM with shift symmetry broken by bottom
quark) are presented in appendix C.

• Scalar DM. The coupling of scalar DM with the dilaton χ can be found treating as
usual χ′ = χ/Z as a conformal compensator, and reads

− χ2

Z2f2
1
2m

2
DM η

2 . (3.1)

This gives the correct mass term after the confining phase transition. Then, the
coupling between the DM and the excitation of the dilaton σ, defined in eq. (2.5), is

LDM ⊃ −
(

2 σ

Zf
+ σ2

Z2f2

)
1
2m

2
DM η

2. (3.2)

• Fermion DM. Analogously, for the (Dirac) fermionic case we have

LDM ⊃ −
σ

Zf
mDM η̄η. (3.3)

• Vector DM. Similarly, for the vector case we have

LDM ⊃
(

2 σ

Zf
+ σ2

Z2f2

)
1
2m

2
DM ηµη

µ. (3.4)

• pNGB DM. Finally, another possibility for the DM is to be a pNGB of a spontaneously
broken global symmetry G. The main difference with the previous cases is the
additional Higgs portal.

Dilaton-mediated channel. In presence of a dilaton, the DM shifts under a G trans-
formation ω as η → η + ωχ′ = η + ωχ/Z. The genuine dynamical degree of freedom,
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with kinetic term invariant under G, is then η/χ′ = Zη/χ [39]. By defining Vη as
the potential generated by the sources of small explicit breaking of G, which we do
not specify here, we then find that the operators invariant under both scale and G
transformations are (also see [49, 81])

Lηχ = χ2

2Z2

(
∂
Zη

χ

)2
+ χ4

(Zf)4Vη

(
Zf η

χ

)
. (3.5)

The couplings between pNGB DM and the dilaton, at first order in the excitation σ
defined in eq. (2.5), then read

LDM ⊃
σ

Z f

(
(∂η)2 − 2m2

DMη
2
)

+ σ2η2

2(Z f)2

(
m2
σ −m2

DM

)
, (3.6)

where we have used integration by parts and the equations of motion for both η and
σ. Note that the derivative origin of the dilaton coupling to pNGB DM results into
different coefficients of the dilaton linear and quadratic interactions with DM, with
respect to the case of DM as a scalar resonance eq. (3.2).

Composite Higgs & DM. The couplings of pNGB DM with SM particles are model
dependent. While the possibility of DM being a pNGB is interesting irrespective of
whether the Higgs boson is also a pNGB or not, here, for concreteness, we will consider
the case where the Higgs is also a pNGB. We further assume that the Higgs and DM
arise from the spontaneous breaking of the same compact group G → H. Minimal
composite Higgs models based on the coset G/H = SO(5)/SO(4) contain just enough
broken generators to accommodate the Higgs complex doublet. However, larger
cosets can offer additional room for having DM among one of its broken generators.
The next-to-minimal coset SO(6)/SO(5) with its five pNGBs naturally contains an
additional scalar singlet [82]. However, the requisite of DM stability imposes an
additional Z2 or U(1), so that the minimal cosets containing DM and at the same
time justifying its stability are O(6)/O(5) [83, 84] or SO(7)/SO(6) [85–87].8 Note
further that we have made the simplifying assumption that the f of the composite
Higgs and the one of the scale breaking coincide, while they really do only up to the
ratio of two O(1) couplings, see e.g. [38].

Higgs-mediated channel and quark contact interactions. An intrinsic property of pNGB
DM is its derivative coupling with the Higgs, which is entirely fixed by the choice of
the coset. A second feature is the DM-Higgs marginal mixing λhη, which depends on
the incomplete representation of the global symmetry G in which the third generation
of quarks is embedded [86]. We focus on the case where the symmetry breaking

8Many other examples have been studied in the literature, e.g SO(6)/SO(5) [88–91], SO(7) → G2
in [92], SU(4)2/SU(4) in [93], SU(4)/Sp(4), SU(5)/SO(5) and SU(4)2/SU(4) in [94], SU(3)/SU(2) × U(1)
and SU(2)2 × U(1)/SU(2)× U(1) in [95], SO(6)/SO(5), SO(7)/SO(6), SO(7)/G2, SO(5)× U(1)/SO(4) and
SO(6)/SO(4) in [90], little Higgs SU(5)/SO(5) in [96], SU(4) × SU(2) × U(1)/Sp(4) × U(1) × Z2 in [97],
SU(6)/SO(6) in [98], two-Higgs doublet models SO(6)/SO(4)×SO(2) in [88, 99–101] or SO(7)/SO(5)×SO(2)
in [102]. We refer to [103] for a review on existing composite Higgs models.
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pattern is G/H = O(6)/O(5) so that [83]

LDM ⊃
1
2(∂µη)2 − 1

2µ
2
ηη

2 − λhη |H|2 η2

+ 1
2(Zf)2

(
∂µ |H|2 + 1

2∂µη
2
)2

+ η2

(Zf)2

(
ct yt q̄LH̃tR + cb yb q̄LHtR + h.c.

)
,

(3.7)

where vH ≡
√

2 〈H〉 = 246 GeV, m2
DM = µ2

η + λhηv
2
H, and we have neglected terms

suppressed by v2
H/f

2. The corresponding Feynman rules are given in table 2 of [83].

Two options now present themselves:

– DM shift symmetry broken by top quark. The largest breaking of the shift
symmetry U(1)h protecting the Higgs mass is given by the top contribution.
Having the top in some representation that explicitly breaks G is necessary to
give mass to the Higgs, otherwise these models would not be viable. It is model
dependent whether the top also breaks the shift symmetry U(1)η protecting the
mass of DM. If it does, then one expects the DM mass and the DM-Higgs quartic
coupling to be, respectively, (see e.g. [84])

mDM .
mh

vH
f ' 0.5 f (3.8)

if the contribution is not tuned to be small, and

λhη ' λh/2 ' m2
h/4v2

H ' 0.065. (3.9)

For definiteness, we fix cb = ct = 1/2.
– DM shift symmetry broken by bottom quark. The DM-Higgs mixing can be

lowered and the direct detection constraints weakened if the DM shift symmetry
U(1)η is only broken at the bottom level [86]

λhη ∼ y2
b ∼ 10−4. (3.10)

In that case we fix ct = 0 [83], while keeping cb = 1/2.

3.2 Dilaton-mediated interactions between DM and SM

Connection to the hierarchy problem. In order to describe the dilaton interactions
with the SM, we assume that the sector that breaks scale invariance is not secluded from
the electroweak sector. In other words, the Higgs originates from the same sector that
breaks scale invariance, as we have already assumed when writing eq. (3.7) for the Higgs
coupling of pNGB DM.

Therefore, our description automatically covers the usual composite Higgs models, and
is thus of interest if one cares about them as a solution of the hierarchy problem of the
Fermi scale [12, 13]. In that case, the interesting values of f — which are still allowed by
experiments [13] — lie as close as possible to a TeV. (Or just above a TeV, if the composite
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sector solves the big hierarchy problem but the little hierarchy is taken care of otherwise,
e.g. by a composite twin Higgs mechanism [15–17].) With this in mind, we will display
our phenomenological results for the standard thermal freezeout DM in a zoomed-in region
of parameter space, where f is not too far from the TeV scale. In turn, this will allow us
to connect with past studies of dilaton-mediated DM [46–50], improving them with our
more refined treatment (which e.g. includes the dilaton wave-function renormalization) and
updating them by the use of more recent experimental results.

Nevertheless, our description is not necessarily tied to a natural solution of the hierarchy
problem, even within our assumption that the Higgs sector communicates with the one
that breaks scale invariance. Large values of f could for example be motivated by other
reasons, such as solutions of the strong CP problem. As we will see below, our supercooling
mechanism for DM will allow for much larger values of f than the standard freeze-out, so
we will extend our plots accordingly when applicable.

The hierarchy problem would then need to be addressed by some other mechanism,
so that values of f much larger than a TeV could be considered. An example of such
mechanism is cosmological relaxation of the electroweak scale [18]. All known successful
relaxion proposals require an inflationary stage or additional assumptions about reheating.
It was shown in [104] that the duration of the inflationary stage can be rather short
(also see [105, 106]), and that new physics at scales f up to ∼ 100TeV can be made
technically natural, via relaxation, with an inflation period of about 10 e-folds. As it will
turn out, the amount of supercooling we will need, in order to reproduce the measured
DM abundance, corresponds to O(10) e-folds. It is interesting and non-trivial that this
same amount of inflation generated by the supercooled PT could be used for the relaxation
mechanism mentioned above, if the Higgs is external to the CFT of the DM sector.9 This
makes composite heavy DM technically natural up to PeV masses (because in our setup
mDM ∼ 10f), or even heavier if its communication with the Higgs sector is somewhat
suppressed. We leave the exploration to such UV physics to future work.

Dilaton portal to SM. After electroweak symmetry breaking the dilaton χ couples to
the SM fields as [47, 66, 67, 81, 107, 108]

L ⊃ 1
2∂µσ∂

µσ − 1
2m

2
σσ

2 − 5
6
m2
σ

Zf
σ3 − 11

24
m2
σ

Z2f2σ
4 + · · ·

−
(
σ

Z f

) ∑
q

(1 + γq)mq q̄q +
(

2σ
Z f

+ σ2

Z2 f2

)[
m2
WW

+µW−µ + 1
2m

2
ZZµZ

µ − 1
2m

2
hh

2
]

+ αEM
8π Z f cEM σ FµνF

µν + αs
8π Z f cG σGaµνG

aµν

+ σ

Zf
∂µh∂

µh− σ

Zf
m2
hh

2 + m2
σ −m2

h

2(Z f)2 σ2h2, (3.11)

where the rescaling of the couplings with Z comes from the assumption of a non-canonical
kinetic term for the dilaton, eq. (2.3). Here, γq is the anomalous dimension of the fermionic
operators, which we assume in what follows to be γq ' 0.

9In the concrete example studied in this paper, the Higgs and its potential do not exist prior to the
dilaton gaining a vev, and hence cannot be relaxed using the supercooled PT.
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Dilaton self-couplings. The dilaton self-coupling terms, scaling as σ3 and σ4, are
obtained after Taylor-expanding the dilaton potential in eq. (2.6) in the small |γε| limit.

Couplings to Higgs. In order to respect the Goldstone equivalence theorem [108, 109],
we have added the dilaton coupling to the Higgs kinetic term in the last line of eq. (3.11).
This term and the other ones on the same line can be derived analogously to how we derived
the dilaton couplings to pNGB DM, see the discussion around eq. (3.5), and indeed arise
naturally in composite Higgs scenarios [39, 49, 81].

Couplings to gauge bosons. Couplings to transverse gauge bosons are induced by trace
anomalies and triangle diagrams containing heavy charged fields. We make explicit the
coupling to gluons, which plays an important role for direct detection,

cG = b
(3)
IR − b

(3)
UV + 1

2F1/2(xt). (3.12)

Here, the function F1/2 is the triangle diagram induced by a fermion [47, 66, 107]

F1/2(x) = 2x[1 + (1− x)f(x)], f(x) =

 [sin−1(1/
√
x)]2 x ≥ 1,

−1
4

[
log

(
1+
√
x−1

1−
√
x−1

)
− iπ

]2
x < 1,

(3.13)

where xt = 4m2
t /m

2
σ. The constant b(3)

UV is the QCD beta function above the confining scale
µ & f , so it contains the contributions from both elementary states of the SM and the
CFT of the techni sector. On the other hand, b(3)

IR is the QCD beta function below the
confining scale µ . f , so it receives contributions from elementary states of the SM and
light composite states, m∗ . f , of the techni sector [81]. Hence, the term b

(3)
IR − b

(3)
UV can

be interpreted as the contribution to the QCD beta function due to loops of composite
states of the techni sector lighter than f [66]. In the SM, the QCD β-function coefficient
reads10 [110]

b
(3)
SM = 11

3 Nc −
2
3Nf , (3.14)

where Nc and Nf are the number of colours and fermions respectively. An appealing feature
of composite Higgs models is the possibility to explain the hierarchy in the Yukawa matrix
from the mixing between elementary quarks and composite resonances charged under QCD:
a small degree of compositeness leading to a small Yukawa coupling [111–113]. To be
conservative, we consider that only the right-handed top and the longitudinal modes of
the electroweak vector bosons receives a strong compositeness fraction, and that the CFT
contribution to the QCD beta function is minimal [47]

b
(3)
IR − b

(3)
UV = −1

3 . (3.15)

10µ d
dµ

1
g2

3
= 1

8π2

(
11
3 Nc −

2
3Nf

)
.
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3.3 DM annihilations and unitarity bound

DM annihilation cross-sections. The main DM annihilation channels are the annihila-
tion into WW, ZZ as well into dilaton pair σσ. We compute all the DM to SM annihilation
channels and report them in appendix E. In the limit of large mDM these are given by

σvrel|ηη→WW,ZZ ' cW
2πα
vrel

m2
DM

(Zf)4 , (3.16)

σvrel|ηη→σσ ' cσ
2πα
vrel

m2
DM

(Zf)4 , (3.17)

where(
cW , cσ

)
=
( 3

16π ,
1

16π

)
,

( 1
16π ,

1
48π

)
,

(
3v2

rel

128π

[
1+ α2

v2
rel

]
,

3v2
rel

128π

[
1+ α2

v2
rel

])
, (3.18)

for scalar, vector and fermion DM respectively, where α is an effective coupling defined
later. In our plots, we instead use the full expression for the DM annihilation cross-section
given in appendix E. In the case of pNGB DM, due to the high number of terms we do not
write any analytical formula for the annihilation cross-sections, but instead we only display
plots of σv in figure 20. Note that the scalar and vector DM models therefore have very
similar indirect detection phenomenology, while the fermion one has velocity-suppressed
annihilations and hence weaker signals.

Sommerfeld enhancement. The effective coupling α governs the strength of the dilaton-
mediated attractive Yukawa potential between the incoming DM wave functions,

VY (r) = −α e
−mχr

r
, (3.19)

responsible for the Sommerfeld enhancement. The non-relativistic potential between the
DM wave-functions can be computed as the Fourier transform

VY (r) = − 1
4im2

DM

∫
d~k3

(2π)3W(~k) e−i~k~r (3.20)

of the four-point function amplitude W(~k) with one-boson mediator exchange [114], where
~k is the momentum of the exchanged boson.

As shown in appendix D, for fermion, scalar and vector resonance DM, we obtain the
dilaton-mediated effective coupling

α = 1
4π

m2
DM

(Zf)2 . (3.21)

In contrast, in the pNGB DM scenario, the Yukawa potential is both dilaton and Higgs-
mediated

VY (r) = −ασ
e−mχr

r
− αh

e−mhr

r
, (3.22)

with
ασ = 1

4π
m2

DM

(Zf)2 , αh = 1
16π

λ2
hηv

2
H

m2
DM

. (3.23)
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See appendix D for the derivation of eq. (3.23) and for a discussion on the contribution of
the derivative coupling η∂η∂h to the potential. In the following, we assume that ασ � αh is
always realized such that we can neglect Sommerfeld effects coming from the Higgs channel.

Then, the enhancement of the annihilation cross-section can be obtained from the
standard analytical formula for the Sommerfeld enhancement factor, derived from the
Hulthén potential

VH = −αmσ e
−mσr

(1− e−mσr) , where mσ = π2

6 mσ, (3.24)

and which we report here for arbitrary l-wave process [115]

S
(l)
H =

∣∣∣∣∣ Γ(a−)Γ(a+)
Γ(1 + l + 2iω))

1
l!

∣∣∣∣∣
2

, (3.25)

with a± ≡ 1 + l + iω(1±
√

1− x/ω), x ≡ 2α/vrel and ω ≡ mDMvrel/(2mσ). Explicitly, for
s-wave annihilation one finds [116]

S
(l=0)
H = 2πα

vrel

sinh(πmDMvrel/mσ)
cosh (πmDMvrel/mσ)− cosh π

√
m2

DMv
2
rel/m

2
σ − 4mDMα/mσ

. (3.26)

In eq. (3.16) and (3.17), we have reported the Sommerfeld enhancement factor in the limit
where the range of the dilaton-mediated force m−1

σ is larger than the de Broglie wavelenght
of the incoming wave-packets (mDMvrel/2)−1, itself larger than the typical DM bound-state11

size (mDM α/2)−1

S
(l=0)
H

mDMvrel/2�mσ
−−−−−−−−−−−→ 2πα

vrel

1
1− e2πα/vrel

α� vrel
−−−−−−−→ 2πα

vrel
. (3.27)

The full expressions can be easily recovered by not taking the above limits. For the p-wave
(l = 1) annihilation of fermionic DM, we have also included the important higher-order
term 1 + α2/v2

rel in eq. (3.18), which lifts the velocity suppression when the Sommerfeld
enhancement is large [115, 120].

Unitarity bound. The unitarity of the S-matrix, SS† = 1, leads to an upper bound
on each coefficient of the decomposition of the inelastic cross-section into partial waves
J [120–123]

σ
(J)
inelvrel ≤ σ(J)

uni vrel = 4π(2J + 1)
m2

DMvrel
. (3.28)

Saturating the unitarity bound corresponds to having a maximal probability for the inelastic
process, and a vanishing probability for the elastic scattering. The scaling of the DM

11We safely neglect the effective contribution, to DM annihilations, of dilaton-mediated formation and
decay of bound states, because selection rules imply it is suppressed parametrically by α2 with respect to
that of Sommerfeld-enhanced annihilations [114, 117]. Dilaton self-couplings are small enough to not affect
this suppression [118]. Furthmore, the pNGB coupling to the Higgs doublet in the symmetric EW phase is
not of the form Hη2, which could otherwise lead to potentially significant bound state formation via charged
scalar emission [119].
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annihilation cross-section in eq. (3.16) and eq. (3.17) implies that unitarity is violated for
DM mass larger than mDM & 2.6Z f for scalar DM, mDM & 3.1Z f for vector DM, and
mDM & 3.9Zf for fermion DM. This apparent violation indicates that the perturbative
methods used to calculate the annihilation cross section have broken down [120]. We
recover the unitarity by using for value of the DM annihilation cross-section, the minimum
between the perturbative cross-section in eq. (3.16) or eq. (3.17), and the cross-section
which saturates the unitarity bound in eq. (3.28).

Possible breakdown of the EFT. The energies involved in DM annihilations are of
the order of the DM mass, so that one may worry about the validity of the EFT we used
to perform our computations. Our predictions are solid if DM, the dilaton and the SM
constitute the lightest states, and they are lighter than the EFT cutoff ∼ 4πf . This is
realised in the case of pNGB DM, is not inconceivable in the models of heavier DM, and
is the reason why in all figures we shade in gray the parameter space where mDM > 4πf . If
other composite states are light, however, the annihilation cross section could be modified
with respect to those that we have computed. In addition, our perturbative calculations
become less accurate for values of the couplings, mDM/(Z f), larger than 1, i.e. close to the
region of unitarity saturation discussed in the previous paragraph. For example, either of the
two comments above could imply that processes with more than two final states are relevant.
All this would have a small impact for DM heavier than O(100)TeV, because in that regime
the cross section is anyway close to the unitarity limit. Note that the intrinsic uncertainties
associated to the coupling apply also to models of elementary DM, because their annihilation
cross section is also affected by non-perturbative uncertainties in that regime.

3.4 Indirect detection

Criterion. We consider Indirect Detection (ID) constraints coming from gamma-ray
measurements of the Galactic Centre from HESS, measurements of gamma-rays from dwarf
spheroidal galaxies (dSphs) from FERMI, and measurements of the anti-proton flux from
AMS-02. We exclude regions of parameter space which satisfy

BR(σ →WW,ZZ, bb)σvrel|ηη→σσ + σvrel|ηη→WW,ZZ,bb > 2 〈σvrel〉IDlimit , (3.29)

where vrel =
√

2 v0, v0 = 220 km/s for DM annihilations in the Milky Way and v0 = 10 km/s
for the dSphs, see e.g. [124]. We checked that considering a proper averaging over a
truncated Maxwellian DM velocity distribution, e.g. [125], does not lead to a significant
change in the constraints. We introduced a factor two on the right-hand side of eq. (3.29)
because we are considering non-self-conjugate DM, while all the limits we consider are given
by the experimental collaborations for self-conjugate DM. The dilaton branching ratios are
given in appendix G.

By writing eq. (3.29) we mean that we take the strongest limit among WW , ZZ and
bb and not their sum weighted in our model, because that would require an analysis of data
that goes beyond the purposes of our paper (plus, for some experiments, these data are
not publicly available). This is a conservative assumption, because it effectively reduces
the flux of cosmic rays produced by DM annihilations. On the other hand, the energy
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spectra of cosmic-rays coming from DM annihilations into dilatons are not the same of
those considered by the experimental collaborations in casting their limits on the ‘pure’
channels WW , ZZ and bb, because of the extra step in the cascade. Whether our procedure
is conservative or aggressive, in this respect, depends on the DM mass and on the specific
properties of each telescope, like the energy in which it is more sensitive and its energy
resolution. Again, performing a more refined analysis goes beyond the purposes of our
paper and requires access to data.

HESS, FERMI, AMS-02. The limits from HESS [126] come from 254 hours of obser-
vation, assuming a standard NFW DM profile and local DM density ρ� = 0.39GeV/cm3.
We take them from [127], where they are given for secluded models and up to a DM mass
of 10TeV. Since the original HESS publication gave limits for DM mass up to 70TeV, we
extend the [127] limits up to mDM = 70TeV following [128], to which we refer also for a
discussion of caveats and details. The limits from FERMI result from the combined analysis
of 15 dSphs after six years of data taking. They assume a NFW profile and extend up to at
mDM ' 10TeV [129]. For AMS-02 we use the limits derived in [130], which are provided up
to mDM ' 20TeV. These were found by requiring the primary p̄ flux from DM annihilation
not deteriorate the astrophysical-only fit of the AMS-02 data [131]. For both FERMI and
AMS-02 limits we again refer the reader to [128] for more details.

CTA, KM3NeT. Finally, we also consider the expected sensitivities from the future
experiments CTA and KM3NeT, as determined in [132] (where we used the ‘GC survey’
sensitivity for the case without a core in the Galactic Centre) and [133] respectively, for
the WW channel. These sensitivities reach DM masses of at most 100TeV not because of
expected intrinsic experimental limits, but because the collaborations keep the habit of not
extending their plots beyond that value. Models of heavier DM, like the ones presented in
this paper and many others, not only exist but are gaining intrinsic attention and motivation.
We therefore encourage the experimental collaborations to look into their data for the
products of annihilations of DM with masses heavier than 100TeV, and analogously to
provide sensitivities in that regime.

Limits and sensitivities from telescopes. The limits and sensitivities described above,
together with those from direct detection and colliders we will describe next, are displayed
in figures 3 and 4, respectively for the cases of scalar and pNGB DM with shift symmetry
broken by the top quark, and for two different values of the wave-function renormalization
Z = 1 and Z = 5. Appendix C.1 contains analogous results for the cases of vector and
fermion DM, displayed in figure 13, and for pNGB DM with symmetry broken by the bottom
quark, displayed in figure 14. Their shape displays the resonances from the Sommerfeld-
enhanced annihilation discussed in section 3.3, and becomes independent of mDM/f for
large values of this parameter just because the limits are not provided for larger DM masses.
This implies that more information on models of heavy DM is contained in existing data,
but is not exploited.
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Figure 3. Dilaton-mediated scalar DM in the standard freeze-out case. On the left (right) we
set the dilaton normalization strength to Z = 1 (Z = 5), cf. section 2.1, and the dilaton mass to
mσ = 0.5f (mσ = 0.8f) to avoid significant supercooling, see figure 2. The red lines show the points
leading to the correct DM abundance assuming the standard freeze-out paradigm, cf. section 3.7.
As mDM increases, the required coupling strength, controlled by mDM/f , also increases to keep
the annihilation cross section at the thermal freeze-out value. We impose the DM annihilation
cross-section to be smaller than the unitarity bound in eq. (3.28), leading to a maximal DM mass of
order ∼ 100 TeV. In yellow, red plum and green we show the current indirect-detection constraints
from FERMI, AMS-02 and HESS, cf. section 3.4. We add the prospects from KM3NeT and CTA in
dashed purple and dashed orange. The resonances in the ID regions are due to the non-perturbative
Sommerfeld effect, cf. section 3.3. In blue, we show direct-detection constraints from the current
XENON-1T and the future LZ, cf. section 3.5. All (in)direct-detection constraints in this and
subsequent plots assume our DM matches the observed relic abundance. In gray we also show a
sketch of the current constraints from LHC and of the prospects at HL-LHC, cf. section 3.6. The
fermion and vector cases are shown in figure 13 of appendix C.

HESS limits are the most constraining indirect-detection ones for all models and in all
the parameter space considered in this paper. For values of mDM/f larger than a few, they
exclude values of the DM mass smaller than 70TeV. We stress that HESS could reach larger
values of mDM already in existing data, if data were analysed in this sense. For smaller
values of mDM/f they exclude smaller values of mDM, down to mDM ∼TeV for mDM/f ∼ 0.7.
HESS limits were derived under the assumption of an NFW DM density profile, if instead
the profile had a core towards the Galactic Center then they would become much weaker.
The most constraining limits would then become those from AMS-02 at large values of
mDM/f and mDM, and those from FERMI dSphs at smaller values of the above parameters
(see [134] for a quantitative comparison of the interplay of limits and sensitivities for varying
sizes of a putative DM core).

Limits and sensitivities from telescopes are stronger than collider and direct detection
ones in the case where DM is a scalar or vector resonance of the strong sector, over the
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Figure 4. Dilaton-mediated O(6)/O(5) pNGB DM in the standard freeze-out case. Lines and
shadings as in figure 3. The constants cb and ct are defined in eq. (3.7). In addition to the dilaton
channel, pNGB DM is coupled to the SM through the composite Higgs interactions, cf. section 3.1,
which lead to a non-trivial behaviour of the red thermal relic abundance contours. We can see a
horizontal resonance around mDM ' mσ/2, a vertical resonance around mDM ' mh/2 and a broad
funnel in the [80 GeV, 1 TeV] or [80 GeV, 500 GeV] region due to efficient annihilation into WW ,
ZZ, hh and tt. In figure 14, we also show the pNGB DM scenario where the shift symmetry is
broken by the bottom quark instead of the top quark, such that the Higgs-DM mixing is reduced to
λhη ' 0.065→ 10−4, cf. section 3.1.

entire parameter space except for large Z and small mDM/f . Indirect detection is weaker
than collider and direct detection in the case of fermion DM (except at large values of
mDM/f and small Z), because that is the only model for which the tree-level annihilation
cross section is p-wave suppressed, see eq. (3.18). The fact that it is comparatively weaker
also in the case of pNGB DM is instead due to the fact that the interesting values of mDM/f

are smaller in that case.

Telescopes and DM masses larger than 100TeV. Finally concerning sensitivities, as
already mentioned they do not extend to mDM > 100TeV simply because collaborations do
not report them there. In the case of DM without supercooling, this is close to the maximal
DM mass allowed by the unitarity limit, so we do not extend them further. However, in the
case of supercooled DM that we will study from section 4 on, larger masses are allowed
and motivate searches for heavier DM in telescope data. To avoid drawing the conclusion
that these models will only be tested by gravitational waves, which would be wrong, we
guesstimate that future γ and ν telescope could well probe them up to mDM ∼ PeV, and
display this in figure 7. This guesstimate is based on our naive extrapolation of those
sensitivities at DM masses larger than 100TeV, where we observe that they cross the
perturbative unitarity limit (which lies close to the prediction of our model) around a PeV.
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3.5 Direct detection

The dilaton-nucleon interactions. The direct detection constraints come from the
possibility for the DM to scatter off a nucleon via a dilaton exchange. The dilaton-quark
and gluon interaction in eq. (3.11), lead to an effective dilaton-nucleon coupling of the form,

Lσnn = yn σ n̄n, (3.30)

where the effective coupling yn is given by

yn ≡ −
∑

q=u,d,s,c,b,t
fnq
mn

Zf
+Rn

cG
8π Zf , (3.31)

with cG given by eq. (3.12) and eq. (3.15), and

mnf
n
q ≡ 〈n| mq q̄q |n〉 , Rn ≡ αs 〈n| GG |n〉 . (3.32)

The quark form factors fnq are taken from [135]

fnu ' 0.015, fns ' 0.037, fnb ' 0.072,
fnd ' 0.034, fnc ' 0.078, fnt ' 0.069.

(3.33)

The trace anomaly Rn can be determined from the fact that, at first order in the heavy-
quark expansion, the form factors of heavy quarks coincides with the opposite sign of their
contribution to the trace anomaly [136]

〈n|
∑

q=c,b,t
mq q̄q |n〉 ' −〈n|

αs
8πc

heavy
G GG|n〉, (3.34)

with cheavy
G = 2Nheavy

q /3 = 2. From using eq. (3.34) together with the fact that the nucleon
mass mn is the trace of the trace of the QCD energy-momentum tensor [137]

mn =
〈
n| θµµ |n

〉
= 〈n|

 ∑
q=u,d,s,c,b,t

mq q̄q + αs
8πcGGG

 |n〉, (3.35)

we find12

Rn ≡ αs〈n| GG |n〉 '
8π

cG − cheavy
G

mn

1−
∑

q=u,d,s
fnq

 ' −2.4 GeV, (3.36)

where we have used cG − cheavy
G = −11

3 Nc + 2
3N

light
q = −9.

The dilaton-mediated scattering cross-sections. The elastic cross-section between
DM and nucleon mediated by dilaton interaction are computed in appendix F. In the limit
mDM & mn, these are approximated by

σ(DMn→ DMn) ' y2
n

π

m2
n

m4
σ

(
mDM

Z f

)2
, (3.37)

for scalar DM, the fermion and vector cases differ only by the order one factor in front of
this expression, and are given in appendix F.

12Note that eq. (3.34) and eq. (3.35) also imply the well-known [137] consistency relation
∑

q=c,b,t f
n
q '

cheavy
G

cheavy
G − cG

(
1−

∑
q=u,d,s f

n
q

)
= 2

9

(
1−

∑
q=u,d,s f

n
q

)
.
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The pNGB DM case. When DM η is a O(6)/O(5) pNGB, the η-η-h vertex and the
DM-quark contact interaction in eq. (3.7) lead to the effective DM-quark lagrangian [83, 84]

Lηqq =
∑

q=u,d,s,c,b,t
aqmq η

2 q̄q, (3.38)

with
aq = λhη(1− 2ξ)

m2
h

+ cq
ξ

(1− ξ)v2
H
, ξ ≡ vH/Zf. (3.39)

We make the conservative assumption that the contact interaction terms with the first two
quark generations are zero cq=u,d,s,c = 0. Then we consider the two cases (λhη, cb, ct) =
(0.065, 1/2, 1/2) and (λhη, cb, ct) = (10−4, 1/2, 0), described along eq. (3.9) and eq. (3.10),
according to whether U(1)η is broken by the top quark or by the bottom quark only. The
pNGB-DM-nucleon elastic cross-section is dominated by the dilaton-mediated contribution
in eq. (3.37) in the bottom-breaking case, and by the Higgs-mediated contribution [83, 84]
resulting from eq. (3.38) in the top-breaking case. In the limit mDM � mn, it reads

σ(DMn→ DMn) '


y2
n

π

m2
n

m4
σ

(
mDM

Z f

)2
bottom-breaking ,

c2
n

π

m2
n

m2
DM

top-breaking ,
(3.40)

with yn given by eq. (3.31) and

cn =
∑

q=u,d,s,c,b,t
fnq aqmn, (3.41)

with fnq and aq given by eq. (3.33) and eq. (3.39), respectively.

XENON-1T, LZ. We compare the DM-nucleon cross-section to the upper bound on the
spin-independent WIMP-nucleon cross-section resulting from 279 live days of data collecting
in XENON-1T [138], and the projection for 1000 live days of data collecting in LZ [4].

The exclusion constraints. Let us now assume our DM matches the observed cosmolog-
ical DM energy density. For normalization of the dilaton kinetic term equal to unity Z = 1,
the scattering cross-section for scalar and vector DM is too weak to lead to any signal by
XENON-1T or even LZ, see figure 3 and figure 13. For Z = 5, XENON-1T constrains DM
mass below 100 and 400GeV, respectively. For fermion DM, XENON-1T leads to the con-
straints mDM & 400GeV and mDM & 3TeV, for Z = 1 and Z = 5 respectively, cf. figure 13.
For pNGB DM receiving its mass from top loops, XENON-1T leads to mDM & 1TeV and
mDM & 600GeV for Z = 1 and Z = 5, respectively, see figure 4. For pNGB DM receiving
its mass from bottom loops, XENON-1T constraints drop to mDM & 80GeV for both Z = 1
and Z = 5, cf. figure 14.

3.6 Collider limits

Higgs couplings. For concreteness and as we have already made this assumption in the
case of pNGB DM, we consider the case that the Higgs boson is a pNGB from the same
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strong sector of our DM models. Higgs couplings measurements [139, 140] then imply

LHC limit: f & 0.8 TeV , (3.42)

where we have translated the combined 95%CL limit on the k-parameters kF and kV from
figure 11 of [140] onto a limit on f by using kV = 1 − v2/(2f2) and kF = 1 − 3v2/(2f2).
Note that, for simplicity and because that would depend on further model details, we have
neglected the contribution to Higgs-coupling deviations that comes from a dilaton-Higgs
mixing. Coming to future sensitivities, we consider those on Higgs coupling measurements
at the HL-LHC as derived in [141], and translated on the confinement scale f as in the
scenario ‘SILH1b’ there, which corresponds to the Higgs as a pNGB and to the generic
expectation from partial compositeness, and matches the k-parameters that we assumed to
derive the limit in eq. (3.42). The sensitivity then reads

HL-LHC sensitivity: f & 1.7 TeV . (3.43)

In composite Higgs models LHC searches for strong sector resonances, like top-partners,
lead to exclusions and sensitivities slightly stricter than those in eqs. (3.42) and (3.43),
see e.g. [142]. This is however not the case in models where the Higgs is a pNGB but
another mechanism is in place to allow for heavier resonances, like in Twin Higgs models
UV-completed by a composite sector (TH+CHM), where Higgs coupling measurements
drive the limits on f [15–17]. Moreover, in both CHMs and TH+CHM, the limits from
top partner searches depend on further model-dependent details like the representations of
the fermion resonances. To keep our discussion general, therefore, we do not display these
limits in our parameter space. Similarly, we do not consider limits from EW precision tests,
as they depend on unknown physics at the scale m∗ and are therefore less robust than those
from Higgs couplings.

Dilaton searches. To the best of our knowledge, the most recent interpretations of
LHC resonance searches in the parameter space of a dilaton have been performed in [50]
for mσ > 300GeV, and in [143] for mσ < 300GeV. The first analysis excludes values of
f of at most a few TeV, but it is of little use for our purposes, because it is performed
under the hypothesis that the dilaton coupling to gluons of eq. (3.11) reads cG = 7 (which
for us would correspond to the assumption that the entire SM is composite), while the
benchmark we have chosen is smaller by a factor of ∼ 20, cf. eqs. (3.12) and (3.15). In
addition, dilaton couplings relevant for its production at the LHC receive a contribution
also from the Higgs-dilaton mixing, which is model-dependent (see e.g. the discussions
in [39] and [143]). Ref. [143] has instead casted its analysis using our same benchmark for
cG (their ‘holographic dilaton’) and, for mσ ∼ 300GeV, found limits on f in the range of
1.5 to 2TeV depending on the assumption on the dilaton-Higgs mixing. We can then infer
that limits on f in the same ballpark apply for the benchmark value mσ/f = 0.25 that we
will consider later. For larger values of mσ/f , relevant to the non-supercooled DM case,
one can naively expect that limits will not become stricter. In light of the above discussion,
since performing a detailed collider analysis goes beyond the purposes of this paper, here
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we adopt the indicative limit

LHC limit: Zf & 1.5 TeV , (3.44)

where we have added the scaling of the limits with Z, neglected in refs. [50, 143]. Analogously,
we make the simplifying assumption that the HL-LHC sensitivity will be in the ballpark
of the one determined in [143] for the ‘holographic dilaton’ and at the largest mσ value
considered there,

HL-LHC sensitivity: Zf & 5 TeV . (3.45)

Summary. To summarise collider limits and sensitivities on our picture, they are driven by
dilaton searches at small Z, and by Higgs coupling measurements at large Z. Their precise
determination would deserve a more detailed study, which however goes beyond the purposes
of this paper, because our main interest lies in regions of f beyond the multi-TeV. Unlike the
cases of indirect and direct detection, the collider limits we consider depend only on Higgs
and dilaton physics, and so are independent of which of the five DM models we consider.

3.7 DM abundance fixed by freeze-out

The Boltzmann equation. Let us review the standard freeze-out scenario without
supercooling. In kinetic equilibrium, the DM abundance can be tracked using the well-
known Boltzmann equation,

dYDM

dx
= − λn

x2+n

(
Y 2

DM − Y
eq 2

DM

)
, (3.46)

where x ≡ mDM/T , λn = MplmDM σn
√

8π2gSM/45, σn ≡ 〈σvrel〉xn with n chosen so that
σn is x independent, and Mpl ' 2.44× 1018 GeV. In the standard analysis one has n = 0
for s-wave and n = 1 for p-wave annihilations. Note the Sommerfeld enhancement factor
changes the velocity dependence of the cross-section, with n = −1/2 for both s-wave and
p-wave in the large coupling/low mediator mass limit. However, for the sake of simplicity
in the present discussion, we neglect it for now but include it in our plots.

Frozen-out DM abundance. Assuming a sufficiently high enough reheat temperature,
the DM interactions are rapid and DM is initially in thermal equilibrium with the radiation
bath. When the temperature drops belowmDM, the DM continues to annihilate preferentially
into light degrees of freedom, until the annihilation rate becomes lower than the expansion
rate of the universe and the abundance freezes-out. This occurs at the freeze-out temperature,
TFO ≡ mDM/xFO, where [144]

xFO = log [0.192(n+ 1)MplmDM σn gDM/gSM]− (n+ 1/2) log[xFO], (3.47)

where gDM is the number of degrees of freedom of DM. It is equal to gDM = 1, 3
4 · 4 and 3

for scalar, fermion and vector, respectively. The abundance today is then the frozen-out
abundance redshifted up to now

ΩDMh
2 = 2DM 6=D̄M

s0mDM

3M2
plH

2
100

Y FO
DM, (3.48)
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where H100 = 100 km/s/Mpc, s0 = 2891.2 cm−3 [145] and

Y FO
DM = (n+ 1)xn+1

FO

λn
. (3.49)

The potential factor 2 in eq. (3.48) stands for DM as being counted as ΩDM + ΩD̄M. It must
be removed if DM is its own anti-particle.

Summary of improvements. In the parameter space discussed so far, the supercooled
PT does not affect the final relic abundance set by the freeze-out mechanism discussed
here. This is the production mechanism considered for dilaton portal DM in the past
literature [46–50]. We have updated these results by combining our freeze-out calculation
with collider, direct and indirect detection limits, in figures 3 and 4. (In plotting the direct
and indirect detection constraints, we assume our DM saturates the observed cosmological
DM abundance, independently of the relation betweenmDM and f required by the mechanism
setting the relic abundance.) We have also extended the analysis to dilaton normalization
strength Z 6= 1, which had not previously been considered in this context. We now go on
to see how the picture is changed once the novel effects pointed out in [45], arising during
supercooled confinement, are taken into account.

4 Supercooled dilaton-mediated composite DM

A late period of thermal inflation such as a supercooled phase transition will alter the
abundance of primordial particles. Determining the abundance of composite states following
supercooling requires the inclusion of a number of novel effects recently explored in a sister
publication [45], which we recapitulate here for completeness.

Sketch of the mechanism. The initial vacuum dominated phase leads to a dilution of
the fundamental constituents (from now named dark techniquanta or quarks for brevity),
which is an effect already familiar for studies considering elementary relics. As the dark
quarks enter the bubbles of strongly-coupled phase, however, we must account for the
dynamics of confinement. When entering the bubbles, the dark quarks are separated by
large distances compared with the confinement scale, 1/f . In [45] it was argued that it
is energetically favorable for the chromo-electric flux to form a string like configuration
toward the bubble wall. Thus minimizing its length inside the strongly-coupled phase. The
fragmentation of the flux string via pair-creation effects leads to the formation of additional
composite states. Kinematics demands that these are boosted in the original plasma frame.
These states undergo deep inelastic scatterings in their return to kinetic equilibrium which
further enhances the yield of the composite DM. Finally thermal effects, such as the 2↔ 2
scatterings familiar from freeze-out, must be taken into account following reheating.

We now provide quantitative estimates of the above effects in the context and notation
of the current model. This allows us to estimate the yield of composite DM following the
supercooling and provide predictions in terms of the dilaton mass. This will allow us to
compare the parameter space of interest with current and future experimental searches
(direct, indirect, collider, gravitational wave).
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4.1 Dilution of the fundamental quanta

Initial quark abundance. We assume that DM is a composite state formed of dark
techniquanta. These are massless before the phase transition, so that their abundance
follows a thermal distribution for massless particles which, when normalised to the entropy
density, reads

Y eq
TC ≡

nTC

s
= 45ζ(3) gTC

2π4g∗s
, (4.1)

where g∗s is the effective total number of relativistic degrees of freedom, and gTC is the
effective number of degrees of freedom of dark techniquanta, which typically consists of
some model dependent number of dark quarks, gq, and dark gluons, e.g. gg = 2(N2 − 1) for
a dark SU(N).

Supercooling stage. The supercooling stage starts when the free energy in eq. (2.15)
becomes vacuum dominated,

π2

30
(
gSM + gq + 45N2/4

)
T 4

start ' Z2m
2
σf

2

16 =⇒ Tstart
N�1'

(
Z mσf√

6πN

)1/2
. (4.2)

In this model Tstart is generally slightly below Tc, defined in eq. (2.20). Supercooling ends
at the nucleation temperature, Tnuc. Within the bubble the dilaton then rolls towards the
minimum of the potential on a timescale ∼ 1/Tnuc (see [45, appendix A]). The dilaton
condensate decays into the SM following bubble collision. For mσ � mh the dilaton
dominantly decays into the four components of the Higgs doublet13

Γχ ≈
m3
σ

8πZ2f2 . (4.3)

Hence the decay rate is much larger than the Hubble factor, H ∼ f2/Mpl, so that we
can neglect the short period of time the dilaton redshifts as matter during its coherent
oscillations. Therefore, all the vacuum energy of the transition is efficiently converted into
radiation at reheating

π2

30gSMT
4
RH ' Z2m

2
σf

2

16 + π2

30
(
gSM + gq + 45N2/4

)
T 4

nuc, (4.4)

=⇒ TRH '
(106.75 + gq + 45N2/4

106.75
)1/4

Tstart
N�1' 0.6

√
N Tstart, (4.5)

with Tstart defined in eq. (4.2).

Dilution of the quarks. As a result of the supercooling period, the dark quark abundance
is diluted according to [29, 146, 147]

Y SC
TC = Y eq

TC

(
Tnuc
Tstart

)3 TRH

Tstart
. (4.6)

13Or equivalently — by virtue of the Goldstone equivalence theorem [108, 109] — into the physical Higgs
boson and longitudinal modes of the WW and ZZ channels, in the broken electroweak phase.
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〈χ〉
q

q

qq q̄

E ≈ 3γwpTnuc

E ≈ f

Ecm ≈
√

Figure 5. The string formation and fragmentation mechanism as seen in the wall frame. Highly
energetic quarks impinge on the wall, leading to a string-like flux configuration. Its centre-of-mass
energy is set by geometric mean of the initial quark energy and the energy of the quark ejected from
the end of the string. The latter is taken to be of the order of the strong scale. The fragmentation
of the string forms hadrons in the confined phase. The fact that the string is attached to the moving
wall acts as a catapult for said hadrons which are then boosted with respect to the plasma frame.

This can be derived by using standard accounting of entropy factors before and after the
PT. The number of e-foldings of the late inflationary phase is given by

Ne ≡ log
(
Tstart
Tnuc

)
N�1' log

[ Zmσ√
6πNf

]1/2
f

Tnuc

 , (4.7)

where in the last equality we have used eq. (4.2).

4.2 Enhancement by string breaking

String formation. A binding potential is switched on when, at Tnuc, the composite
sector confines. The potential increases approximately linearly with the distance between
the dark techniquanta [148–156]

ETC ' f2 d. (4.8)

The overall picture of the string fragmentation mechanism we will now discuss is illustrated
in figure 5 (more detail of the modelling can be found in [45]). After the supercooling
period, the inter-quark distance is d ' n−1/3 ' 1/Tnuc, much larger than the confinement
distance 1/f . The confinement scale seen by the quarks when crossing the bubble wall is
close to the zero temperature value because the dilaton rolls quickly to its minimum. The
flux confines in a string-like configuration, starting at the dark quark and terminating at
the bubble wall. This minimizes the energy compared to if a flux line were to connect two
nearest neighbour quarks.

String fragmentation. As the initial quark further penetrate inside the bubble, the flux
string fragment into dark sector hadrons. Conservation of colour requires the ejection of
a dark quark from the end of the string back into the deconfined phase, see figure 5. Its
energy is estimated dimensionally as Eej,w ∼ f in the wall frame. The energy in the string
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center-of-mass frame is found to be [45],

ECM ≈
√

3γwpTnucf, (4.9)

where γwp is the bubble-wall Lorentz factor in the plasma frame. For values γwp > f/Tnuc it
is energetically possible for the quarks to enter the bubble.

Bubble wall velocity. In the run-away regime, which will apply in our scenario, one
finds the Lorentz factor γwp is the ratio of the bubble size to the bubble size at nucleation.
At collision time the former is set by the timescale of the transition, denoted β−1 to match
onto the literature, and the latter is typically ∼ T−1

nuc. Thus close to bubble-wall collision,
i.e. when the majority of the volume is changing phase, we have

γwp ≈
√

48TnucMpl
β/HZmσf

, (4.10)

where for typical supercooled phase transitions we have β/H ∼ 10.

Number of string fragments. The fragmentation of the string produces a number of
composite states, NStr.

ψ , which on general grounds, we expect NStr.
ψ = P(log[Ecm/m∗]), where

P is a polynomial function, and m∗ ≡ g∗f is the mass scale of hadrons with 1 . g∗ . 4π.
(As in QCD, where the multiplicity of final state particles grows as a polynomial function
of log [

√
s/GeV], with current data being well fitted by a cubic polynomial with O(1)

coefficients [157, 158].) The yield of composite states, ψ, after string fragmentation is

Y Str.
ψ ≈ Y eq

TC

(
Tnuc
Tstart

)3 TRH

Tstart
P
(

log
[
Ecm
m∗

])
. (4.11)

As dark gluons can also initiate strings, we include their contribution to the degrees-of-
freedom in the above equation. Note there is significant model uncertainty as to the precise
form of P. Nevertheless, as long as certain assumptions hold, the yield following the next
step of deep inelastic scattering becomes insensitive to P, as we shall now discuss.

4.3 Enhancement by deep inelastic scattering

Gluon string catapult. The Lorentz factor of the string COM frame in the wall frame
is [45]

γcw ≈
√

3γwpTnuc
f

≈
√

21MplT 2
nuc

β/HZmσf2 . (4.12)

And the Lorentz factor of the string centre-of-mass frame in the plasma frame is

γcp ≈
1
2
γwp

γcw
≈
√

Mpl
β/HZmσ

. (4.13)

Therefore, the NStr.
ψ composite states formed after fragmentation of the string, are catapulted

with the Lorentz boost factor in eq. (4.13) relative to the plasma frame.
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String fragment energy. Following the string fragmentation, the average energy of the
hadrons (which we denote population A) as measured in the plasma frame reads

EA,p ≈ 2γcp
ECM

NStr.
ψ (ECM)

≈ γwpf

NStr.
ψ (ECM)

. (4.14)

Similarly the energy of the ejected quarks (population B) is

EB,p ≈ γwpf. (4.15)

These form a dense shell around the bubble and confine without the formation of extended
strings (due to their close distance) when entering the opposing bubble.

Cascade of deep inelastic scattering. The kinetic energy of these populations of
particles are dissipated through scatterings with the preheated plasma coming from the
decay of the dilaton condensate after bubble collision. The energy of the particles in the
preheated plasma is set by the oscillation frequency of the dilaton condensate Eprh ≈ mσ.
Scatterings of the boosted composite resonances with the preheated plasma are energetic
enough to produce additional composite states provided

√
s > m∗. Above this threshold,

a majority of the energy is dissipated through deep inelastic scattering, provided that
m4
σ � ∆V , see [45, section 8.2]. In our scenario this translates to 4mσ < Zf which

coincides with the region of significant supercooling, see figure 2. Otherwise, dissipation
through elastic scattering dominates.

DM abundance after DIS. Assuming the kinetic energy above threshold is dissipated
through a cascade of DIS, we find the DM to be independent of P, and to read [45]

Y DIS
DM ≈

0.43 eV
m∗

BR
10−6

1
Z5/2

gTC

130
4π
g∗

( 10
β/H

) ( 0.2
mσ/f

)3/2 (Tnuc/f

10−5.9

)4
. (4.16)

Here we have conveniently normalised to the observed DM density YDMmDM = 0.43 eV [159]
with the expectation that mDM ≈ m∗. We have also included a model dependent pseudo-
branching fraction, BR, which takes into account that not only DM particles are created
in the string fragmentation and DIS but also unstable composite states which decay into
the SM. (Alternatively, for secluded dark sectors, the unstable states could decay to dark
radiation rather than to the SM). The quantity BR is not a true decay branching fraction,
but seeks to capture the overall suppression of DM production. This suppression may be
significant, e.g. if DM is a heavy baryon of the strong sector, then we expect the light dilaton
to be produced much more copiously in the string fragmentation and DIS. Taking into
account various possibilities, typical estimates give BR ∼ 10−6 to 10−3 [45, appendix C].

4.4 Thermal effects

Boltzmann equation. Finally, we must determine any non-negligible changes to the
yield due to 2 ↔ 2 scattering with the thermal bath after supercooling and reheating.
(Assuming the DM annihilation products — or equivalently the initial states of the inverse
annihilation — consist of relativistic bath particles in thermal equilibrium, as we do here,
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our estimates also immediately capture any 2 ↔ N type processes because of detailed
balance.) Following [147] we refer to this as the sub-thermal abundance. In this epoch, the
DM abundance again evolves according to the Boltzmann equation, eq. (3.46), introduced
in section 3.7. However, the initial conditions are now given by xRH = mDM/TRH and Y DIS

DM ,
the abundance after string breaking and DIS estimated in eq. (4.16).

We integrate from xRH to ∞ and obtain the final DM abundance as a sum of the
contribution in eq. (4.16) together with sub-thermal correction. For simplicity, we again
neglect the change in velocity dependence arising from the Sommerfeld enhancement for
our analytical estimates, but include it in our numerical calculations used for the plots. It
is useful to introduce Y FO

DM = Y∞DM, i.e. the standard freeze-out abundance obtained when
Y DIS

DM � Y eq
DM.

Standard freeze-out. If the reheating temperature is above the freeze-out temperature,
TRH > TFO, the DM abundance quickly relaxes to thermal equilibrium and the standard
FO abundance in eq. (3.49) is recovered. However, if TRH < TFO, the usual freeze-out
mechanism is not recovered. We discuss this case next.

Sub-freeze-out. If the DM yield after supercooling is larger than the yield at thermal
equilibrium, i.e. if

Y DIS
DM & Y EQ

DM (xRH), with Y EQ
DM (x) = 45gDM

4
√

2π7/2gSM
x3/2e−x, (4.17)

then thermal effects annihilate a bit of DM and the final yield is given by

1
YDM

=


1

Y DIS
DM

+ λs
xRH

, for s-wave,

1
Y DIS

DM
+ λp

2x2
RH

, for p-wave.
(4.18)

Sub-freeze-in. If instead Y DIS
DM . Y EQ

DM (xRH), thermal effects produce a bit more of DM
and the final yield is given by

YDM =


Y DIS

DM + λs
2025g2

DM

128π7g2
SM
e−2xRH(1 + 2xRH), for s-wave,

Y DIS
DM + λp

2025g2
DM

64π7g2
SM
e−2xRH , for p-wave.

(4.19)

Heavy thermal Dark Matter beyond the unitarity limit. We show the final DM
relic abundance lines in figure 6. We can see that the introduction of a period of supercooling,
ending at a temperature Tnuc before the strong sector confines — shown by the purple
to blue lines — opens the parameter space of DM to masses beyond the unitarity bound
at 100TeV, shown by the red line. As shown explicitly in figure 1, the DM abundance
along the horizontal blue-to-purple line is set by sub-freeze-in, eq. (4.19), while the vertical
lines are set by sub-freeze-out, eq. (4.18). Note that whenever the reheating temperature is
lower than the freeze-out temperature TRH < TFO, the DM abundance differs from standard
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Figure 6. Supercooled dilaton-mediated scalar DM, for branching ratio of DM production (defined
in eq. (4.16)) BR = 10−3 (top) and BR = 10−6 (bottom), and for wave-function renormalization
(defined in section 2.1) Z = 1 (left) and Z = 5 (right). When mDM & 100 TeV, the unitarity bound on
the DM annihilation cross-section leads to DM overproduction, cf. section 3.3. However, in presence
of supercooled confinement, DM can have a larger mass, cf. section 4. This is displayed by the lines
where the correct relic abundance is reproduced for different values of the nucleation temperature
Tnuc (purple to blue). Below the horizontal blue line the universe is overclosed, as can be understood
by the dashed gray line lying very close to it, where the reheating temperature TRH, eq. (4.4), is larger
than the would-be freeze-out temperature TFO, eq. (3.47). For masses larger than ∼ 106 TeV, the
techniquanta of the confining sector do not have enough kinetic energy to penetrate the bubbles [45],
and our picture breaks down (yellow regions). If DM is a bound-state of the strong sector with
confining scale f , we do not expect its mass to be mDM & 4πf (grey regions). We also display in
red the line where the DM abundance would be obtained via the standard freeze-out mechanism,
if there was no supercooling. The current constraints from direct-detection, indirect-detection, and
the LHC, displayed with shadings as in figure 3, do not probe the regions opened by the presence
of supercooling. The vector and fermion cases are shown in figures 15 and 16, respectively.
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freeze-out even for vanishing supercooling (large Tnuc), cf. eq. (4.18). The limitation is set
by the yellow region in figure 6 where the dark quarks have not enough kinetic energy to
penetrate inside the bubble and our picture breaks down.

Impact of dilaton kinetic terms normalization Z. We comment that for a large
renormalization of the dilaton kinetic term equal, Z = 5, supercooling can be relevant down
to values of mDM which are smaller, by a factor of a few, with respect to the case Z = 1.
This is due to the suppression of DM annihilations, cf. eqs. (3.16), (3.17) and (3.21), and is
visible in figure 6: the red line where the standard relic abundance would be reproduced is
moved to smaller masses, leaving more space for the non-thermal abundance reproduced on
the supercooled lines in blue. The relevance of this comment is limited to natural values of
the compositeness scale, f . 10TeV. We also note that one cannot increase Z arbitrarily,
as this also increases TRH. Indeed, we checked that for Z & 10 the supercool parameter
space is pushed to the region mDM & 4πf , which is both unexpected and where our EFT
breaks down.

4.5 Phenomenology

Comparison of experimental coverage. Finally, we combine our results about the
DM relic abundance with a calculation of the nucleation temperature in figure 7. This shows
that large areas of parameter space of heavy DM are possible in this scenario provided the
dilaton is somewhat light compared to f , namely for mσ ∼ 0.2f for Z = 1 and mσ ∼ 0.45f
for Z = 5. These regions of heavy DM are out of reach of direct detection and collider
probes. But they return a strong stochastic gravitational wave background (SGWB), details
of which are given in the following section, which leads to a detectable signal-to-noise ratio
in LISA, BDECIGO and/or ET (above astrophysical foregrounds). Projected sensitivities
of future γ-ray and neutrino telescopes, such as CTA [1], LHAASO [2], SWGO [160, 161]
and KM3NeT [3], typically cut plots at around 100TeV. Naively extrapolating their results
to higher mDM, however, shows such instruments are sensitive up to mDM ≈ 1000TeV, for
DM annihilations in the Milky Way with cross section close to the unitarity bound, see
section 3.4 for more details. We tentatively also indicate this region in our plots.

Rooms for refinement. We wish to emphasise that there are large uncertainties both
in our determination of Y SC

DM, as it involves non-perturbative physics, and our calculation of
Tnuc in section 2.3, given the various approximations we have made in modelling the effective
potential. Furthermore, QCD corrections should be added if Tnuc . 100MeV, indicated by
a dashed line in figure 7. This adds further model dependence, as the QCD confinement
scale can be suppressed in the high temperature phase of the new strong sector, and any
QCD corrections to the effective potential come with their own uncertainties [30, 40].

5 Stochastic gravitational wave background

Supercooled cosmological phase transitions have generated much enthusiasm due to the
prediction of a large Stochastic Gravitational Wave Background (SGWB) detectable by
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Figure 7. Left: the parameter space for Z = 1 and mDM = 4πf showing the required supercooling
to match the relic abundance in the dark blue region (standard thermal freeze-out is recovered
where the dark blue region morphs into a vertical line). The supercooling is achieved for mσ ∼ 0.2f
with the precise mass of the dilaton depending on the scale f . The red contours terminate when the
universe becomes trapped in the metastable state. In the yellow region in the bottom-right corner
the quarks are insufficiently energetic to enter the first bubble they encounter. The stars indicate
two benchmark points for which we show the gravitational wave spectrum in the following section.
Regions testable with LISA, BDECIGO, ET (SNRFGL > 104) and LIGO O5 (SNRFGL > 10) are
shown. (The gap between LISA and ET closes for SNRFGL = 102.) The GW signal has only been
calculated in the runaway regime, so that it is inaccurate in the top-left corner. Current direct and
indirect detection limits are shaded in red and green, respectively. The LZ reach is not indicated
to avoid clutter, as it falls in the region already excluded by HESS. The presumed reach of future
γ-ray telescopes to DM annihilations with cross sections close to the unitarity bound, as predicted
in our model, is indicated with a dashed green line. Right: the parameter space for Z = 5. The
required supercooling is achieved for mσ ∼ 0.45f . The number of e-folds has a small log dependence
on mσ, eq. (4.7), such that the approximate Ne is very accurate for both plots.

future GW interferometers. This was first discussed in the context of warped geometry [25–
36] that relates by holography to nearly-conformal strong dynamics [38–43, 45]. Supercooled
PTs were also studied in models described by classically conformal dynamics [77, 162–170].
In contrast, non-supercooled confining PTs have a weaker SGWB, while still possibly
detectable [171–180].

5.1 GW from bubble collision

PT parameters. The SGWB depends on the bulk parameters of the transition, which
can be taken to be the nucleation temperature Tnuc, the wall velocity vw, the ratio of the
vacuum energy density released in the transition to that of the radiation bath αPT, the
duration of the phase transition β−1 and the efficiency of the energy transfer from the
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vacuum energy to the scalar field gradient κφ:14

α ≡ ∆V
ρrad(Tnuc)

, β ≡ dS

dt

∣∣∣
nuc

= −H∗T
dS

dT

∣∣∣
nuc
, κφ ≡

ρφ
∆V . (5.1)

Here ∆V is the zero-temperature energy difference between the false vacuum and the
true vacuum, eq. (2.10). Furthermore, αPT � 1, κφ ' 1, vw ' 1, and β follows from our
calculation of Tnuc.

Choice of modeling. In [45], we show that in the regions of interest for DM, the bubbles
collide in the runaway regime, therefore, all the vacuum energy is transferred to the gradient
of the scalar field. Here we adopt the bulk flow model [181, 182] which shows an IR
enhancement of the GW spectrum due to the long-lasting free propagation of the shells
of anisotropic energy-momentum tensor after the collision (but also see possible subtleties
raised in [183, 184]). The IR enhancement has been observed in lattice simulations [185]
where it has been shown to be larger for thick-walled bubbles, which are found in the close-
to-conformal vacuum type transitions studied in this work (also see [45, appendix A]).15

We use the estimate of the differential SGWB per logarithmic frequency interval for vw ' 1
as given in [182]

h2Ωφ = 1.67× 10−5
(
H∗
β

)2 ( κφαPT
1 + αPT

)2
(

0.0866v3
w

1 + 0.354v2
w

)( 100
gSM

)1/3
Sφ(ν), (5.2)

where Sφ(ν) describes the spectral shape

Sφ(ν) =
3ν2.1
φ ν0.9

2.1ν3
φ + 0.9ν3 , (5.3)

and the peak frequency is

νφ = 2.62× 10−3 mHz
( 1.24

1− 0.047vw + 0.58v2
w

)(
β

H∗

)(
TRH

100 GeV

)(
gSM
100

)1/6
, (5.4)

and in the above we assume the bath is dominated by gSM following reheating. Compared
to the envelope approximation [188–190], the bulk flow model predicts a softer IR and
harder UV spectrum for supercooled transitions, while the peak frequency and amplitude
remains relatively unchanged. In addition to the above, for redshifted frequencies smaller
than ν∗ = H∗/(2π) we impose an ν3 scaling as required by causality [191–194].

14A more correct definition of β would be β ≡ −(1/Γ)(dΓ/dt)|nuc where Γ is the tunneling rate defined in
eq. (2.16). Our choice, β ≡ (dS/dt)|nuc, is of course, more conservative when finding the GW amplitude.
Furthermore, estimates of β/H ≈ 1 coming from the nucleation temperature tend to become inaccurate and
bubble percolation must instead be taken into account.

15In contrast, for thin-walled bubbles, after collision the scalar field can be trapped back in the false
vacuum, so that instead of propagating freely, the shells of energy-momentum tensor dissipates via multiple
bounces of the walls [78, 186, 187].
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5.2 Signal-to-noise ratio

Most optimistic SNR. One can check that the entire supercooled region of this model
returns observable signatures at current or future interferometers. We use the signal-to-noise
ratio [195, 196]16

SNR =
√
tobs

∫ (ΩGW(ν)
Ωsens(ν)

)2
dν, (5.5)

where tobs is the observation time. (We set tobs = 3 years for LISA and BDECIGO, 10 years
for ET, 30 days for LIGO Hanford-Livingston O1 [200], 99 days for Hanford-Livingston
O2 [201], 168 days for Hanford-Livingston O3 [202], 160 days for Hanford-Virgo and
Livingston-Virgo O3 [202], and 1 year for LIGO O5.) Here Ωsens(ν) encodes the sensitivity
of the detector,

h2Ωsens(ν) = 2π2ν3

3H2
100

Sn(ν), (5.6)

where Sn is the noise spectral density, either for LISA [196], BDECIGO [203, 204], or
ET [205].17 For LIGO and Virgo cross correlations we use [195]

h2Ωsens(ν) = π2ν3

3H2
100

√√√√2Si
nS

j
n

Γ2
ij

, (5.7)

where Si
n and Sj

n are the noise spectral densities for the interferometers, and Γij is the overlap
reduction function,18 and the cross correlation SNRs are combined in quadrature. Using
the above SNR, the usual power-law-integrated sensitivity curves can be constructed [195].
Performing this exercise, we see our results agree with [196] for LISA, [204] for BDECIGO,
and [206] for ET. However, we find our curves are approximately a factor of five more
sensitive for LIGO-Virgo O3 and O5 compared to those found in the full LIGO-Virgo
collaboration analysis [201, 202] (although the shapes match). We therefore weaken our
respective SNRs for LIGO-Virgo by these factors, in order to conservatively mimic the
complete analysis.

16Equation (5.5) assumes the signal is sub-dominant to the noise in the detector. In the case in which the
signal is large compared to the noise, the SNR can be roughly approximated by making the replacement
Ω2

sens → 2Ω2
GW +2ΩGWΩsens +Ω2

sens in the denominator of eq. (5.5) [197–199]. The SNR eventually saturates
to a maximum value of ∼ 103 for LISA, ∼ 104 for BDECIGO, and ∼ 105 for ET. As these are well inside
the detectable regimes of parameter space, our qualitative results are not affected by assuming the simple
noise-dominated SNR used in the literature.

17There is a factor of two difference in the formula for Ωsens(ν) in [196], due to a difference in the definition
of Sn, which we take into account.

18For the Si
n see:

• https://dcc.ligo.org/LIGO-T1600302/public,
• https://dcc.ligo.org/LIGO-T1500293-v13/public,
• https://dcc.ligo.org/LIGO-T1800042-v5/public.

For Γij see https://dcc.ligo.org/public/0022/P1000128/026/figure1.dat.
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Figure 8. The stochastic gravitational wave background sourced by the bubble collisions following
the supercooled phase transition for the two benchmark points. Foregrounds due to super-massive
black hole, galactic and extragalactic white dwarf, neutron star, and black hole binaries are also
shown [202, 207, 208]. Foreground subtraction techniques continue to be developed [208–215]. The
power-law integrated sensitivity curves SNR = 10, defined in eq. (5.5), of various current and future
detectors are also shown, constructed using the projected sensitivities described in the text.

Foreground-limited SNR. The above acts as a simple measure as to whether a signal
is detectable. Full reconstruction requires more advanced techniques which we do not seek
to emulate here but detailed analysis shows some signal is recoverable provided SNR >

10 [196]. Furthermore, there is an issue of contamination by astrophysical foregrounds,
ΩFG(ν). Dealing with such confusion noise requires more advanced techniques still under
development [213–215]. In absence of such a treatment, but to still show that the phase
transitions studied here are detectable, we define a foreground limited SNR

SNRFGL =
√
tobs

∫ (Max[0,ΩGW(ν)− ΩFG(ν)]
Ωsens(ν)

)2
dν. (5.8)

The first foreground we take into account here corresponds to the component of galactic
white dwarf binaries which cannot be subtracted after four years of LISA datataking [208]
(with the sign error correction noted in [216]). We also include extragalactic white dwarf
binaries [207], together with the binary black hole and binary neutron stars from the median
value shown in [202] (extrapolated to lower frequencies by assuming a ∝ ν2/3 scaling). For
other estimates see [217–219]. Note the binary neutron star and binary black hole signals
could to some extent also be subtracted [209–212]. Example SGWB spectra for the two
benchmark points, together with power-law-integrated sensitivity curves, and astrophysical
foregrounds are shown in figure 8. Estimates of the signal-to-noise ratio are displayed in
figure 9 showing our scenario is testable at upcoming experiments. Similarly, we have shown
areas with large values of SNRFGL in our summary plots in figure 7. Current limits do not
constrain our scenario [220].

5.3 Analytical estimate

Supercooled PTs have large bubbles. The scenario is generically testable because
small values β/H ∼ O(10) are typical of supercooled PTs from nearly-conformal poten-
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Figure 9. The signal-to-noise ratio estimated for future measurements at LISA, BDECIGO, and
ET. The curves have been calculated for Z = 1 and mσ = 0.17f , 0.18f , 0.19f , 0.20f , 0.21f , 0.22f
(from top to bottom). The curves terminate when the universe becomes stuck in the false vacuum.
The plot on the right assumes degradation of the achievable signal due to white dwarf and neutron
star binaries, cf. eq. (5.8). Even without foreground subtraction, the entire parameter space of this
scenario can be tested with a combination of these interferometers.

tials [25, 26, 29, 40, 165]. As a result, the bubble radius at collision, rcoll ∼ vw β−1, is larger
and the typical GW signal is enhanced.

Beta parameter in the thick-wall limit. Along with our numerical determination
above, this is well illustrated by making use of an analytical estimate for the beta parameter,
starting with the O(4) action in the thick wall limit

S4 = c∗ 2π2Z2f2

m2
σ log (Tc/T ) , (5.9)

following a derivation given in appendix B. Next, we characterize the duration of the super-
cooling by the number of e-foldings Ne ≡ log(Tstart/Tnuc) where Tstart is the temperature
when the inflation stage starts, defined in eq. (4.2). From this, we obtain

β

H∗
≈ 10

(0.2Zf
mσ

)2 ( 10
Ne

)2
, (5.10)

showing approximate analytical agreement with our numerical result.

5.4 Comments

Three caveats to our conclusions are in order:

• QCD catalysis. We again caution that the eventual inclusion of QCD effects could
change the predicted behaviour of the PT and hence GW signal if Tnuc . 100MeV [30].
On the other hand, if QCD confinement is delayed due to the altered β function from
the BSM field content, then these effects may be completely negligible.

• Matter-dominated era. The rapid decay of the dilaton means there is no early matter
dominated phase following the phase transition, which would lead to additional
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redshifting and a weaker GW signal [165, 170, 193, 194, 221, 222], as occurs the
Coleman-Weinberg potential of radiative symmetry breaking studied in [147].

The rapid decay in our scenario arises due to the dilaton coupling generating the
kinetic term of the SM Higgs, (σ/f)(DµH)2, which is present due to our implicitly
assuming the Higgs is a pNGB of the same sector that breaks scale invariance.

In the Coleman-Weinberg example, the reheating instead occurs through a Higgs
portal interaction of the form, λhσσ2|H|2, where in order to generate the Higgs mass
term, one needs λhσ ∼ (vH/f)2 � 1 in the limit f � vH. Hence, in this case, the
decay of the condensate is suppressed compared to Hubble following the PT.

• Hidden sector confinement. The above construction, in particular the dilaton interac-
tions with the SM, eq. (3.11), is that of a composite Higgs.

One may instead wish to consider a scenario in which the EW sector is external to the
confining dark sector CFT. The scenario remains viable with the following changes:

1. To avoid matter domination after the phase transition, which falls outside the
scope of our calculation, one requires rapid decay of the dilaton. This can be
achieved by having the dilaton decay to lighter hidden sector degrees of freedom,
as any portal coupling to the SM is now expected to be small (in analogy to the
Coleman-Weinberg example).

2. Similarly, along these lines, direct detection constraints are severely weakened
due to the suppressed portal coupling.

3. Indirect detection is also modified, with additional steps in the cascade possible if
all light hidden sector degrees of freedom eventually decay to the SM. This leads
to softer spectra and constraints that could be weaker or stronger, depending on
the DM mass. If the dilaton decay products instead cascades into dark radiation
there is, of course, no measurable indirect detection signal apart from possible
changes to Neff . (Leaving only gravitational waves from the phase transition.)

6 Summary and outlook

We have considered Dark Matter as a composite state of a new confining sector where
the dilaton, the pNGB associated with approximate scale symmetry (corresponding to
the radion in the 5D dual description, see appendix A for the dictionary), mediates the
interactions of DM to the Standard Model. We have provided a detailed analysis of this
well-defined scenario, improving over [46–50] by including i) a non-canonical kinetic term
for the dilaton, ii) recent experimental constraints, iii) the possibility that DM is also a
pNGB, see figures 3 and 4.

This scenario naturally predicts a supercooled phase transition in the early universe.
This induces a stage of inflation that dilutes the pre-existing abundance of any particle,
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and so allows for thermal DM masses well beyond the Griest and Kamionkowski unitarity
bound of O(100) TeV [121].19

DM production in this scenario was studied in [45], which pointed out novel dynamical
features and proposed a way to model them, that affected the DM abundance by orders of
magnitudes with respect to the previous (wrong) treatment. In this paper we have built on
the results of [45] (synthesised in section 4) by including in our description the dilaton. We
made progress in two respects:

1. We have computed the nucleation temperature Tnuc, where the universe transits to
the confined vacuum via bubble nucleation, as a function of the dilaton mass (Tnuc
was treated instead as a free parameter in [45]). The essential message can be read in
figure 1, which is a simplified version of figures 6, 15 and 16. Novelties with respect
to previous works include:

1.1 Unlike in previous studies of DM yields from supercooling, which used classically
scale invariant potentials [147], we found reheating following the PT is generally
efficient in this scenario. This is desirable aspect from the viewpoint of achieving
a strong signal of GWs, as a period of matter domination following the PT leads
to a suppression of the GW signal [165, 170, 193, 194, 221, 222].

1.2 On a more technical side, we have numerically computed Tnuc and investigated
its dependence on the dilaton wavefunction renormalization Z, see e.g. figure 2,
and we have quantified in detail the O(3) vs O(4) contributions to nucleation
together with the uncertainty of the analytical and other approximations, see
appendix B.

2. We have studied the signals of the model at gravitational waves interferometers,
colliders, direct and indirect detection experiments, for the cases where DM is a heavy
scalar, fermion or vector resonance of the strong sector, or a pNGB. The progress
with respect to previous literature can be summarised as follows:

2.1 To the best of our knowledge, this is the first quantitative analysis of the interplay
of gravitational wave interferometers with other telescopes in testing models of
heavy DM. The summary of our results is shown in figure 7: while only GWs will
potentially test all the parameter space up to mDM ∼ 106 TeV, for DM masses
of hundreds of TeV telescopes will provide a complementary access to the same
models, realising a new kind of multimessenger approach to heavy DM.

19Other ways to evade this bound are, for example, DM dilution after a matter era [128, 223–233], or
having a dark sector being much cooler than SM [234, 235], DM becoming heavy only after freezing-out [236],
DM annihilating with one spectator field [237, 238] or with many of them [239], DM forming an extended
object which undergoes a second annihilation stage [240–242]. Mechanisms involving phase transitions
include the possibility of a short inflationary stage associated with perturbative DM mass generation [147],
DM filtered [243–245] or squeezed-out [246–248] by non-relativistic bubble wall motion, DM produced by
elastic bubble-bubble collisions [249] or perturbative plasma interactions with relativistic walls [250]. (In
contrast with these last possibilities, the mechanism which we studied in [45] and which we review in the
present work, relies on a strongly interacting theory, with relativistic bubble walls, which come from effective
potentials which result in inelastic bubble wall collisions.)
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More information on the gravitational wave signals is reported in section 5 (see
e.g. figure 8 for two spectra), and a lot more details on the DM phenomenology
are provided in figures 6, 15 and 16 in the supercooled case, and in figures 3, 4, 13
and 14 in the standard freeze-out one. Note that our results also constitute both
an improvement and an update in the field of standard frozen-out composite DM,
of particular relevance if the composite sector is motivated by the electroweak
hierarchy problem.

2.2 We have calculated and reported a large number of quantities necessary to
determine the signals of these models, in some cases completing and extending
previous literature, for example with the dependence on Z of these results.
In particular, the interested reader can find the DM and dilaton couplings in
section 3, the non-relativistic DM potential relevant for the computation of
Sommerfeld enhancement (including the case of pNGB DM) in appendix D, the
DM cross sections for annihilation in appendix E and for direct detection in
appendix F, the dilaton decay widths in appendix G, and finally Gravitational
Waves predictions in section 5.

Although we have assumed for definiteness the Higgs to be a pNGB from the same
sector of DM and the dilaton, the results summarised at point 1., as well as the important
message that GWs and telescopes could interplay in testing these models, are not modified
if instead the Higgs belong to another sector, as long as the dilaton decay width is not too
suppressed.

In our calculation, a large number of uncertainties have entered. These include the
modelling of the non-perturbative physics of string formation and breaking, deep inelastic
scattering in the early universe, QCD effects in the effective potential at low temperatures,
and the uncertainties in the predictions of the stochastic GW background. These aspects
need to be improved in order to extract precise information about these models at upcoming
GW observatories such as LISA, BDECIGO, and the ET, as well as at future colliders, DD
experiments, and telescopes like KM3NeT, CTA, LHAASO, SWGO etc. The promising
phemonenological findings of this paper motivate and encourage such a refinement.

Finally, our results adds to the motivation (see e.g. [128]) to employ current and future
telescope data to test models of annihilating heavy Dark Matter. Their complementarity
with GW interferometers, studied in this paper, could open a new multimessenger approach
in the quest for DM.
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A 5D dual picture

A.1 Dilaton in warped extra dimensions

A warped extra dimension. The five dimensional (5D) line-element in warped extra
dimensions (WED) reads [251]

ds2 = e−2 k T (x) |φ|gµνdx
µdxν + T (x)2dφ2 (A.1)

where φ is an angular dimensionless variable and where, in units where c = 1 and denoting
length dimensions by L, [T (x)] = [k]−1 = L. The WED solution to the hierarchy problem
of the Fermi scale is tied to the values [251]

〈T 〉 ≡ rc ' O(10)/k, k = O(MPl), (A.2)

where the latter size is in units of ~ = 1 ([MPl] = [vev]). One then has

M2
Pl = M3

5
k

(1− e−2krc) ' M3
5
k
, (A.3)

where M5 is the 5D Planck scale.20

Stability of the IR brane. Let us now define the position of the IR brane z and the
running mass scale µ as

z(x) ≡ 1
µ(x) ≡

1
k e−πkT (x) , z−1

1 ≡ 〈µ〉 = k e−πkrc ' TeV. (A.4)

The Goldberger and Wise potential [252] that stabilises the IR brane at z = z1 reads [26, 65]

VGW ' v2
1µ

4
(

(4 + 2δ)
[
1− v0

v1

(µ
k

)δ]2
− δa

)
, (A.5)

where v0 and v1 are the vevs of the 5D scalar field on the UV and IR brane in units of m3/2

and δ, δa are small dimensionless parameters. This potential has extrema at

〈µ〉 = 0, 〈µ〉 = k

(
v1
v0

) 1
δ

X
1
δ
±, X± = 4 + δ ±

√
4δa + δ2

4 + 2δ , (A.6)

where X+ (X−) is a minumum for δ > 0 (δ < 0). By choosing δa > 0 one guarantees
that the minimum 〈µ〉 6= 0 is deeper than the minimum at 〈µ〉 = 0. An IR-UV hierarchy
〈µ〉/k ≈ 10−15, as needed to solve the big hierarchy problem, is achieved for a moderate
hierarchy between the vevs on the UV and IR branes and for a moderately small δ.

20S5 =
∫
d4x
∫ π
−π dφ

√
−G(2M3

5 R−Λ), with G the 5D metric, R the 5D Ricci scalar, and [M5] = [k][vev]2.
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4D kinetic terms. The action for the 5D Ricci induces the following 4D kinetic term
for µ [65]

Lkin = 12M
3
5
k

(∂µ(e−πkT (x)))2 = 24M
3
5

k3
(∂µµ)2

2 . (A.7)

Masses of the 4D resonances. Finally, the 4D masses mkk of KK-modes, i.e. the 4D
composite resonances, read [65]

mkk '
(
n+ 1

4

)
π

z1
≈ 1
z1

= 〈µ〉 ≡ gχf , (A.8)

where the last equality defines a 4-D strong coupling gχ and a scale f , whose notation
anticipates the connection with the 4D picture considered in the main body of this paper.

A.2 From 5D to 4D

4D CFT viewed as holographic dual of warped AdS5. We rely now on the 4D
holographic picture of WED [253, 254] by employing the relation

(
M5
k

)3
≡ N2

16π2 ≡
1
g2
χ

, (A.9)

where gχ is a 4D coupling that for simplicity we identify with the one of eq. (A.8) and
where we have made a choice for an order one ambiguity in the correspondence. In terms of
the canonically normalised field χ (now with [χ] = [vev]),

χ(x) =
√

24
gχ

µ(x) , (A.10)

and choosing for definiteness δ < 0, one then has (in WED [v2
1] = [~] = [m]−2[vev]2))

L = 1
2(∂µχ)2 −

4v2
1 g

4
χ

242 χ4

(1 + δ/2)
[
1−X−

(
χ

〈χ〉

)δ]2

− δa

 , 〈χ〉 =
√

24
gχ
〈µ〉 =

√
24f .

(A.11)

Normalization of dilaton kinetic terms Z. In the notation of the main text, WED
then predicts [254]

Z =
√

24 (A.12)

as well as

m2
σ = −4δcχ g2

χ

f2

Z2 , ∆V = V (χ = 0)− V (χ = Zf) '
(
Zmσf

4

)2
, (A.13)

where both expressions are valid up to relative O(|δ|), and where we have defined the order
one number cχ = 4v2

1g
2
χ(
√
δa − δa/2). We have then recovered all the quantities of interest

for our 4D study in the main text.
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B Analytical tunneling approximations

B.1 The thick wall limit

Minimal gradient energy. When the potential barrier is small compared to the potential
energy difference, the wall thickness is as large as possible in order to minimize the gradient
energy. This is the thick-wall limit.

O(4)-bounce action. The O(4)-symmetric bounce action reads

S4 = π2R3 δR

(
δφ

δR

)2
+ π2

2 R4 V̄ (B.1)

where δφ is the field excursion while δR is the wall thickness. In the thick-wall limit, we
can set δR = R. The quantity V̄ < 0 is the potential energy averaged in the bubble volume.
We approximate it as V̄ = V (φ∗)− V (φFV) where φ∗ is the initial field value, at the center
of the bubble.21 Additionally, we assume (without lack of generality) that the false vacuum
energy and the corresponding field value (at asymptotic distance) are zero, V (φFV) = 0
and φFV = 0, such that we can write V̄ = V (φ∗) and δφ = φ∗. Hence, we obtain

S4 = π2R2 δRφ2
∗ + π2

2 R4 V (φ∗), (B.2)

where φ∗ is understood as the value which minimizes the bounce action. Upon solving for
the critical bubble radius Rc, solution of δS4/δR = 0, and reinjecting into eq. (B.2), we
obtain [25, 26, 255]

R2
c = φ2

∗
−V (φ∗)

and S4 = π2

2
φ4
∗

−V (φ∗)
. (B.3)

O(3)-bounce action. Repeating straightforwardly the same steps for the O(3)-symmetrical
bounce leads to

R2
c = φ2

∗
−2V (φ∗)

and S3 = 4π
3

φ3
∗√

−2V (φ∗)
. (B.4)

Whether the tunneling completes via O(3) or O(4) bounce depends on the ratio

S4
S3/T

= 3π
4

φ∗√
−2V (φ∗)

T ∼ 2Rc T. (B.5)

B.2 Application to the light-dilaton scenario

B.2.1 High-temperature or low-temperature expansion

We now apply the general findings of the previous subsection to the scenario which we
study in this paper, where the effective potential in eq. (2.15) can be written as

V (χ)− V (0) '


m2

eff
2 χ2 − λeff(χ)

4 χ4 if χ . T/gχ,

bN2T 4 − λeff(χ)
4 χ4 if χ & T/gχ,

(B.6)

21In the thick-wall limit, the initial field value φ∗ is generally close to the zero of the potential φzero

defined by V (φzero) ≡ V (φFV).
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with

b ≡ π2

8 , m2
eff ≡

15
16
N2g2

χ

Z2 T 2, (B.7)

λeff(χ) ≡ 4 cχ
Z4 g

2
χ

[
1− 1

1 + γε/4

(
χ

Zf

)γε]
' m2

σ

Z2f2 log
(
Zf

χ

)
+O(γ2

ε ). (B.8)

In the first line of eq. (B.6), we expanded the function Jb(m2
CFT/T

2) in eq. (2.12) in the so-
called ‘high-temperature’ limit Jb(x) ∼

x→0
−π4

45 + π2

12x, while in the second line we considered
the ‘low-temperature’ limit Jb(x) ∼

x→∞
0. We have expanded the quartic λeff(χ) in eq. (B.8)

in the conformal limit γε → 0. We recall that the anomalous dimension γε controls the beta
function of the confining sector and is related to the dilaton mass mσ through

m2
σ = −4 γε cχg2

χ

f2

Z2 . (B.9)

B.2.2 O(3) thick-wall action

Formula. We can compute the thick-wall approximated O(3)-bounce action by injecting
eq. (B.6) into eq. (B.4), so that we get

S3 '


c∗

4π
3 Min

χ∗

χ3
∗√

−2
(
m2

effχ
2
∗/2− λeff χ4

∗/4
) , if χ∗ . T/gχ,

c∗
4π
3 Min

χ∗

χ3
∗√

−2 (bN2 T 4 − λeff χ4
∗)
, if χ∗ & T/gχ,

(B.10)

where c∗ is a coefficient which we add and which we fit on the numerical solution. We later set

c∗ ' 2, (B.11)

for both the O(3)- and O(4)-bounce actions.

Minimization. After minimization with respect to χ∗, we obtain

S3/T '


c∗

16π
3λ∗

meff
T

,

c∗
4π√

3
χ∗/T√
λ∗

,

χ∗ '


2meff√
λ∗

, if χ∗ . T/gχ,

(
12 bN2

λ∗

)1/4

T, if χ∗ & T/gχ.

(B.12)

We now evaluate the quantity gχ χ∗/T for the two lines in eq. (B.12), in the conformal limit
γε → 0

gχ χ∗
T
'


77
( 5
N

)( 10
Ne

)1/2 ( 0.25
mσ/f

)
� 1,

12
( 5
N

)1/2 ( 10
Ne

)1/4 ( 0.25
mσ/f

)1/2
Z1/2 � 1,

(B.13)

where Ne is the number of e-fold of supercooling

Ne ' log
(
f

T

)
. (B.14)
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Final result. Hence we conclude that the second line of eq. (B.12) is the correct solution,
meaning that the thermal corrections can be neglected at the tunneling point. To be clearer
for the reader we report the final solution here

S3
T

= c∗
4π√

3
χ∗/T√
λ∗

, (B.15)

with

λ∗ ≡ λeff(χ∗), χ∗ =
(

12 bN2

λ∗

)1/4

T +O(γ2
ε ), (B.16)

and b, λeff , c∗ defined in eq. (B.7), (B.8), (B.11).

B.2.3 O(4) thick-wall action

Formula. We repeat the procedure for the O(4)-bounce by plugging eq. (B.6) into eq. (B.3)

S4 '


c∗
π2

2 Min
χ∗

χ4
∗

−
(
m2

effχ
2
∗/2− λeff χ4

∗/4
) , if χ∗ . T/gχ,

c∗
π2

2 Min
χ∗

χ4
∗

− (bN2 T 4 − λeff χ4
∗/4) , if χ∗ & T/gχ.

(B.17)

Minimization of the expression for χ∗ & T/gχ leads to χ∗ = 0, which is not a viable bounce
solution.

Final result. The minimization of the expression for χ∗ . T/gχ leads to

S4 = c∗
2π2

λ∗
, (B.18)

with

λ∗ ≡ λeff(χ∗), χ∗ =
(
4(4 + γε) bN2 T 4(Z f)2+γε/m2

σ

) 1
4+γε =

(
16 bN2

λ∗

)1/4

T +O(γ2
ε ).

(B.19)

Backward check. We backward check that the thermal corrections are negligible at the
tunneling point

gχ χ∗
T
' 13

( 5
N

)1/2 ( 10
Ne

)1/4 ( 0.25
mσ/f

)1/2
Z1/2 � 1, (B.20)

hence confirming that the second line of eq. (B.17) is the correct solution.

B.3 Analytical expression for the nucleation temperature

B.3.1 O(3) nucleation temperature

Instantaneous nucleation approximation. The nucleation happens when the tunnel-
ing rate in eq. (2.16) becomes comparable to the Hubble expansion rate per Hubble volume,
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see appendix B.4 for a justification. For O(3)-dominance, the nucleation temperature is
solution of

S3(Tnuc)
Tnuc

' 4 log Tnuc
H(Tnuc)

+ 3
2 log S3/Tnuc

2π , (B.21)

where the Hubble parameter is defined by eqs. (2.10) and (2.11),

H2(T ) = H2
Λ +H2

rad = Z2m
2
σ f

2/16
3M2

pl
+ π2g∗T

4

90M2
pl
, g∗ = 106.75 + 45N2

4 . (B.22)

O(3) nucleation temperature. An analytical expression of the nucleation temperature
can be obtained in the conformal limit mσ → 0 by inverting the thick-wall formula for the
S3 bounce action in eq. (B.15),(

Tnuc
Tc

)4
' Exp

(
−c4
∗

1024π4

3(Scrit
3 /Tnuc)4 bN

2Z
2

y2
σ

)
, (B.23)

where Scrit
3 is solution of eq. (B.21), where yσ ≡ mσ/f , and where Tc is the critical

temperature, defined by eq. (2.20), and which we recall here

Tc =
(
Z mσf

4
√
bN

)1/2
. (B.24)

Note that from using eq. (2.8) and gχ = 4π/N , we can rewrite eq. (B.23) in terms of the
anomalous dimension γε(

Tnuc
Tc

)4
' Exp

(
−c4
∗

16π2 b Z4N4

3 cχ |γε| (Scrit
3 /Tnuc)4

)
. (B.25)

B.3.2 O(4) nucleation temperature

Instantaneous nucleation approximation. We now consider the case where tunneling
occurs via O(4)-symmetric bounce. The nucleation temperature is solution of

S4(Tnuc) ' 4 log R−1
c

H(Tnuc)
+ 1

2 log S4
2π , (B.26)

where Rc is the bubble radius which according to the thick-wall formula in eq. (B.3), reads

Rc =
(

Z3f/mσ√
bN logTcT

)1/2

T−1 ∼ T−1. (B.27)

Solution. From rewriting the S4 bounce action in eq. (B.18) in the conformal limit
mσ → 0 as

S4 = A4
log Tc/T

, with A4 = c∗
π2

2
Z4

|γε| cχ g2
χ

= c∗ 2π2Z
2f2

m2
σ

, (B.28)

and from injecting it into eq. (B.26), we obtain

Tnuc =
√
HΛ Tc

(2π
S4

)1/16
Exp

1
2

√
−A4 +

(
log Tc

HΛ
+ 1

8 log S4
2π

)2
 . (B.29)
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Figure 10. We compare the temperature of nucleation via O(3)-symmetric bounce to the tempera-
ture of nucleation via O(4)-symmetric bounce, computed numerically with an overshoot-undershoot
method. We can see that the O(4) bounce dominates over the O(3) bounce for large supercooling
f/Tnuc, Z = 1 and N ≥ 3.

Universe stuck forever in false vacuum. Neglecting the S4/2π terms, we conclude
that there is no nucleation solution when [42]

A4 & log Tc
HΛ

, (B.30)

and that the minimal nucleation temperature is

Tmin
nuc '

√
HΛ Tc ' 0.1 f Z3/4

(
mσ

f

)3/4
(

f

Mpl

)1/2

. (B.31)

That minimal temperature can be visualized as the end points of the lines in figure 10.
In the parameter space beyond those end points, we can rely on the confinement of
an additional strong sector (possibly QCD) to boost the tunneling rate and trigger the
nucleation [30, 31, 40, 44].

O(4) nucleation temperature. Note that from inverting eq. (B.28), we can write(
Tnuc
Tc

)4
' Exp

(
−c∗

2π2

Scrit
4

Z2

y2
σ

)
, (B.32)

where Scrit
4 is solution of eq. (B.26) and where yσ ≡ mσ/f . The advantage of eq. (B.32)

is to make explicit that the nucleation temperature is exponentially suppressed for small
dilaton mass mσ, or equivalently for small anomalous coupling |γε|. Note also that from
using eq. (2.8) and gχ = 4π/N , we can rewrite eq. (B.32) as(

Tnuc
Tc

)4
' Exp

(
−c∗

Z4N2

32 cχ |γε| Scrit
4

)
, (B.33)
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Figure 11. We compare the nucleation temperature computed after numerically solving for the O(3)-
or O(4)-bounce action with the overshoot-undershoot method, to the analytical approximations in
the thick-wall limit presented in section B.2. Right: the O(4) analytical formula, in eq. (B.18), is a
quite good approximation. Left: the O(3) case, in eq. (B.15), while relatively good approximation for
Z = 1, worsens for larger Z. This was expected since it has been derived in the conformal limit γε → 0.

and we recover that at fixed γε, the nucleation temperature scales like Tnuc/f ∝ e−N
2 ,

e.g. [40].

B.3.3 Discussion

In contrast to the O(3) thick-wall solution which can only be computed in the conformal
limit, eq. (B.16), the O(4) thick-wall solution can be computed for finite γε, eq. (B.19). In
figure 11, we can see that the thick-wall formula for the O(3) and O(4) bounce compare
quite well with the numerical solution. Only the O(3) formula becomes wrong away from
the conformal limit, e.g. for Z & 2 or N & 20. We can compare the analytical formula for
the O(3)- and O(4)-bounce actions in the γε → 0 limit

S4
S3/T

= 1.0
( 10
Ne

)1/4 ( 3
N

)1/2 ( 0.2
mσ/f

)1/2
Z1/2 (B.34)

This analytical approximation predicts that the O(4) bounce overtakes over the O(3) bounce
for N & 3, Z = 1 and large Ne. However, note the aforementioned inaccuracies for O(3)
for Z & 2. Indeed, contrary to the prediction made in eq. (B.34), the O(3) bounce governs
nucleation for Z = 5 in the numerical results of figure 10.

B.4 Precise percolation temperature

In this appendix we make a refined estimate of the temperature at which the phase transition
completes, following the work of [256–260].

Volume fraction converted into true vacuum. The number of bubbles formed per
unit of time and per unit of comoving volume is given by

Γ(t′) a(t′)3. (B.35)
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The comoving volume of a bubble which has nucleated at t′ and expanded at the speed of
light until t is

4π
3

(∫ t

t′

dt̃

a(t̃)

)3

. (B.36)

We deduce the volume fraction converted into true vacuum at time t, including bubble
overlapping22

I(t) =
∫ t

tc
dt′ Γ(t′) a(t′)3 4π

3

(∫ t

t′

dt̃

a(t̃)

)3

. (B.37)

We can also interpret I(t) as the average number of bubbles inside which, a given point of
space is contained. It can be larger than 1 because it includes overlapping. Hence, one defines
Pfalse(t) ≡ e−I(t), where multiple counting has been subtracted by the exponentiation.23

This is the probability that a given point remains in the false vacuum at time t. We also
define the physical volume remaining in the false vacuum per unit of comoving volume
Vfalse(t) ≡ a(t)3 Pfalse(t).

Percolation time. We consider the percolation to occur when

Pfalse(t) . 1/e =⇒ I(t) & 1 and Vfalse(t)
dt

. 0. (B.38)

The second condition is necessary to prevent the possibility that the probability that a
given point has been converted to the true vacuum tends to 1, while the physical volume of
false vacuum goes to infinity [260].

Percolation temperature. Finally, upon using the adiabatic relations H dt = −dT/T
and d(T a) = 0, the nucleation temperature Tnuc is obtained from

4π
3

∫ Tc

Tnuc

dT ′

T ′
Γ(T ′)

T ′3H(T ′)

(∫ T ′

Tnuc

dT̃

H(T̃ )

)3

' 1, (B.39)

after checking that

3 + Tnuc
dI(T )
dT

∣∣∣
Tnuc

< 0. (B.40)

Instantaneous nucleation approximation is enough. As shown in figure 12, for the
class of logarithmic potential which we consider in this paper, the difference between the
percolation temperature derived from eq. (B.39) and eq. (B.40), and the instantaneous
nucleation temperature derived from Γ ' H4 is tiny. This justifies the use of the latter
prescription in section 2.3.

22Note that we have neglected the initial size of the bubble just after it nucleates. Including it would give
I(t) =

∫ t
tc
dt′ Γ(t′) 4π

3

(∫ t
t′
a(t′)
a(t̃) dt̃+R(t′)

)3
= 4π

3

∫ Tc

Tnuc
dT ′

T ′
Γ(T ′)

T ′3 H(T ′)

(∫ T ′

Tnuc
dT̃
H(T̃ ) +R(T ′)T ′

)3
where R′ is

the bubble radius at nucleation. The correction is of order R(T ′)H ′ ∼ TeV
MPl

and is completely negligible.
23The probability Pfalse(t) that a given point remains in the false vacuum is the N → ∞ limit of the

product
∏N

n=1

(
1− dt dI(tn)

dt

)
where dt = t−tc

N
and 1− dt dI(tn))

dt
is the probability of remaining in the false

vacuum between tn = tc + (t− tc) nN and tn+1.
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Figure 12. We compare the nucleation temperature computed from the analytical O(4) action
in the thick-wall limit, using either the instantaneous approximation in eq. (2.21), or the refined
percolation conditions in eq. (B.39) and eq. (B.40).

C More plots

C.1 Non-supercooled dilaton-mediated composite DM

We provide the phenomenological constraints, coming from direct detection, indirect detec-
tion and colliders on dilaton-mediated DM, in absence of supercooling. Figure 13 extends
the scalar DM scenario of figure 3 in section 3, to the fermionic and vector DM cases. If
DM is a fermion, the DM annihilation is p-wave and the ID signal is too weak to lead to
any constraints. If DM is a vector, a scalar, or a pNGB, the ID signal is still too weak to
be probed by currents ID experiments, however future experiments could probe region up
to 100TeV, cf. figures 3 and 13.

Additionally, figure 14 extends the pNGB scenario of figure 4 to the case in which the
pNGB mass receives its dominant contributions from the bottom quark instead of the top
quark, such that the Higgs mixing λhη is reduced.

C.2 Supercooled dilaton-mediated composite DM

We show the new parameter space which is opened when introducing a period of supercooling
preceding the confinement. They complete figure 6 in section 4. We show the cases where
DM is a vector in figure 15 and a fermion in figure 16. We vary the string-to-DM branching
ratio from 10−3 to 10−6 and the dilaton normalization strength from Z = 1 to Z = 5. We
can see that the constraints coming from direct detection, indirect detection and colliders
are far from reaching the new opened regions. However, they can be probed by GW, see
figure 7.
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Figure 13. Dilaton-mediated DM in the standard freeze-out case. We display DM as a fermion
(top), vector (middle) and scalar (bottom) resonance of the strong sector, cf. section 3.1. Lines
and shadings as in figure 3. In the fermionic case, the DM annihilation cross-section is p-wave, cf.
eq. (3.18), so that the indirect-detection constraints are suppressed compared to the scalar and
vector cases.
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Figure 14. Dilaton-mediated O(6)/O(5) pNGB DM in the standard freeze-out case. Lines and
shadings as in figure 3. All the rest as in figure 4, where here we additionally display the case
where the shift symmetry is broken by the bottom quark, such that direct detection is dominated
by dilaton exchange, as opposed to Higgs exchange in the case of top-breaking, see eq. (3.40).

D DM non-relativistic potential

Non-relativistic potential. The non-relativistic potential between the DM wave-functions
can be computed as the Fourier transform

V (r) = − 1
4im2

DM

∫
d~k3

(2π)3W(~k) e−i~k~r (D.1)

of the four-point function amplitude W(~k) with one-boson mediator exchange [114], where
~k is the momentum of the exchanged boson. See an example in figure 17.
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Figure 15. Supercooled dilaton-mediated vector DM. Lines and shadings as in figure 6.

D.1 Dilaton-mediated channel

Non-relativistic and instantaneous approximation. In what follows, we work in the
non-relativistic and instantaneous approximation limit [114]

vrel, α . 1 =⇒ k0 '
~k2

2µ . |~k| with |~k| ' (µvrel, µα) and µ ≡ mDM/2. (D.2)

4-point function amplitude. For dilaton-mediated DM, scalar resonance, scalar pNGB,
fermion resonance and vector resonance have the same 4-point amplitude

W(~k) ' 4m4
DM

(Zf)2
i

~k2 +m2
σ

. (D.3)
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Figure 16. Supercooled dilaton-mediated fermionic DM. Lines and shadings as in figure 6. The
indirect-detection constraints are suppressed compared to the scalar and vector cases, because the
annihilation cross-section of fermion DM is p-wave, cf. eq. (3.18).

We defined k as the momentum running in the dilaton propagator and p1, p2 as the momenta
of the incoming DM particles, see figure 17. To help the reader, we provide the detailed
computations for scalar resonance DM, cf. eq. (3.2)

Wscalar(~k) = −2im2
DM

(Zf)
i

k2 −m2
σ

−2im2
DM

(Zf)
vrel, α . 1
' 4m4

DM

(Zf)2
i

~k2 +m2
σ

, (D.4)
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Figure 17. Feynman diagram of the 4-point function amplitude W(~k), either dilaton σ or Higgs h
mediated, for pNGB DM η. Generalization to scalar, fermion and vector resonance DM is straight-
forward.

for scalar pNGB DM, cf. eq. (3.6)

WpNGB, σ(~k) = 2i
(
p1.(p1 − k)− 2m2

DM

)
Zf

i

k2 −m2
σ

2i
(
p2.(p2 + k)− 2m2

DM

)
Zf

= −4m4
DM + 8m2

DMk(p1 − p2)− 4(kp1)(kp2)
(Zf)2

i

k2 −m2
σ

vrel, α . 1
' 4m4

DM

(Zf)2
i

~k2 +m2
σ

, (D.5)

for fermion resonance DM, cf. eq. (3.3)

Wfermion(~k) = (−1)−imDM

Zf
ū(p′1)u(p1) i

k2 −m2
σ

−imDM

Zf
v̄(p2)v(p′2) (D.6)

vrel, α . 1
' (−1) m

2
DM

(Zf)2 ū(p1)u(p1) i

~k2 +m2
σ

mDM

Zf
v̄(p2)v(p2)

= 4m4
DM

(Zf)2
i

~k2 +m2
σ

, (D.7)

and for vector resonance DM, cf. eq. (3.4)

Wvector(~k) = −2im2
DM

Zf
εµ(p1)ε∗µ(p′1) i

k2 −m2
σ

−2im2
DM

Zf
ε∗α(p2)εα(p′2)

vrel, α . 1
' 2m2

DM

Zf
εµ(p1)ε∗µ(p1) i

~k2 +m2
σ

2m2
DM

Zf
ε∗α(p2)εα(p2)

= 4m2
DM

(Zf)2
i

~k2 +m2
σ

. (D.8)

For the fermion and vector cases, we have used the normalization rules [108]

ūr(p)us(p) = 2mδrs, ūr(p)us(p) = −2mδrs, (D.9)
ε∗µ(p)εµ(p) = −1. (D.10)

The minus sign in eq. (D.6) arises from fermion permutations [108, section 4.7].
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Yukawa potential. After injecting eq. (D.3) into eq. (D.1), we get the Yukawa potential

Vσ(r) = − 2π
(2π)34im2

DM

4m4
DM

(Zf)2

∫ ∞
0

dk k2
∫ π

0
dθ sin θ i

k2 +m2
σ

e−ikr cos θ

= − 1
(2π)24im2

DM

4m4
DM

(Zf)2 2
∫ ∞

0
dk k2 i

k2 +m2
σ

sin kr
r

= − 1
(2π)24m2

DM

4m4
DM

(Zf)2 π
e−mχr

r

= −ασ
e−mχr

r
, (D.11)

with
ασ = 1

4π
m2

DM

(Zf)2 . (D.12)

Our result for the pNGB case, eq. (D.5), differs from [49] where the authors find a value of
ασ which is 9 times larger.

D.2 Higgs-mediated channel

Couplings. Due to the coset structure of composite Higgs models, pNGB DM has
also interactions with the Higgs boson. The lagrangian in eq. (3.7), valid for the coset
SO(6)/SO(5), leads after SSB, H =

(
0, (h+ vH)/

√
2
)
, to the interaction terms

L ⊃ λhηvH
2 h η2 + vH

4(Zf)2 (∂µh∂µη)η. (D.13)

4-point function. They give the following respective Higgs-mediated four-point function
amplitudes

Wh, quartic(k) ' λhηvH
i

|~k|2 +m2
σ

, Wh, derivative(k) ' vH
4(Zf)4

i|~k|4

|~k|2 +m2
σ

. (D.14)

Higgs-mediated Yukawa potential. From introducing the first term of eq. (D.14) into
eq. (D.1), we get a Yukawa potential

Vh, quartic(r) = −αh, quartic
e−mχr

r
, αh, quartic = 1

16π
λ2
hηv

2
H

m2
DM

. (D.15)

The injection of the second term of eq. (D.14) into eq. (D.1) leads to a divergent integral
which must be cut-off at the EFT scale |~k| . f . We obtain

Vh,derivative(r)'
vH

64π2m2
DM(Zf)4

2fr
(
6+(m2

σ−f2)r2)cosfr−2
(
6+(m2

σ−3f2)r2)sinfr
r5

' vH
64π2m2

DM(Zf)4×


2f(m2

σ−f2)cosfr
r2 , r& f−1,

− 2
3f

3m2
σ, r. f−1.

(D.16)
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Figure 18. Non-relativistic potentials between 2 pNGN DM particles assuming either the dilaton-
mediated channel or the Higgs-mediated channel. In the later case, we consider either the quartic
interaction or the derivative one, cf. eq. (D.13).

Higgs- and dilaton-mediated Yukawa potential. The non-relativistic potential be-
tween pNGB DM particles is the sum of eq. (D.11), eq. (D.15) and eq. (D.16)

VpNGB(r) = −ασ
e−mσr

r
− αh, quartic

e−mσr

r
+ Vh, derivative(r). (D.17)

We compare the three pNGB DM potentials in figure 18.
In contrast to the other two, Vh, derivative(r) is not a Yukawa potential. Instead, at large

distance r & f−1, the potential oscillates around attractive and repulsive behavior with a
1/r2 envelop, and at small distance r . f−1, it flattens. The impact of such a potential on
the annihilation cross-section of pNGB is beyond the scope of this work. In any case, in the
scenaro which we study in this work and for the chosen values of the parameters,

Vσ(r) & Vh, quartic(r) =⇒ λhη .
6m2

DM

vH(Zf) , (D.18)

Vσ(f−1) & Vh, derivative(f−1) =⇒ m2
DM & 6

√
6πZmσvH , (D.19)

the full potential is always dominated by the dilaton-mediated contribution shown in orange
in figure 18.

E DM annihilation cross-sections

Thermally averaged annihilation cross-section. In order to compute the thermal
effects on the DM abundance after the supercooling stage we need to compute the thermally
averaged DM annihilation cross-section. Considering the process A1 +A2 −→ A3 +A4 with
m1 = m2 = mi and m3 = m4 = mf , the reference [261] gives

〈σvrel〉=
∫
σvrel e

−E1/T e−E2/Td3p1 d
3p2∫

e−E1/T e−E2/Td3p1 d3p2
= 1

8m4
iTK

2
2
(mi
T

) ∫ ∞
4m2

i

(S−4m2
i )
√
SK1

(√
S

T

)
σdS,

(E.1)
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where the annihilation cross-section σ reads [108]

σ = 1
16πS

√√√√S − 4m2
f

S − 4m2
i

∫
dΩ
4π

1
NI !

1
σ1σ2

∑
σ1, σ2 σ3 σ4

|M |2, (E.2)

where NI is the number of identical particles in the final state and σ1, σ2 are the number
of internal degrees of freedom of the initial states. We compute the transition amplitude M
with Feyncalc [262].

Integration over the scattering angle. Integration over the scattering angle in the
center of mass frame dΩ = 2π sin θdθ can be performed after replacing the Mandelstram
variable t = (p1 − p3)2 by

t = m2
1 +m2

3 −
(S +m2

1 −m2
2)(S +m2

3 −m2
4)

2S + 1
2Sλ

1/2(S, m2
1, m

2
2)λ1/2(S, m2

3, m
2
4) cos θ,

(E.3)
with S = (p1 + p2)2 and λ(a, b, c) being the so-called triangle function [263]

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc. (E.4)

Non-relativistic limit. Note that the non-relativistic limit, which is sufficient for com-
puting the indirect detection constraints, is recovered by setting the Mandelstram variables
S to

S = 4m2
i

(
1 + v2

rel

4

)
, (E.5)

where vrel is the relative velocity between the incoming particles in their center of mass
frame.

Sommerfeld enhancement. As discussed in section 3.3, non-perturbative Sommerfeld
enhancement of the interaction probability is included after multiplying the perturbative
cross-section σpert in eq. (E.2) by the factor S(l)

H in eq. (3.25)

σnon-pert = σpert × S(l)
H . (E.6)

Goldstone equivalence theorem. The cross-sections for DM annihilation into Higgs
pairs, σ(DMDM→ hh), are different from [47] due to the coupling of the dilaton to the Higgs
kinetic term in eq. (3.11), needed in order to respect the Goldstone equivalence theorem

σ(DMDM→ hh) ∼
S�mZ

σ(DMDM→ ZZ). (E.7)

We find the cross-section for vector DM annihilation into dilaton pair ≈ 4 times smaller
than [47], in the large mDM limit.

Formulae. In the next subsections, we give the analytical formulae of the DM annihilation
cross-sections for scalar, vector and fermion DM and we plot them in figure 19. Because of
their length, we chose to not report the analytical formulae of the pNGB DM annihilation
cross-sections in the present article, but instead we simply show their plot in figure 20.
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Figure 19. DM annihilation cross-section in the scenarios where DM is a scalar (top), a vector
(middle) or a fermionic (bottom) resonance of the confining sector. On the left panels we fix the
confining scale f = 10 TeV while on the right panels, we fix it equal to the DM mass f = mDM. For
all plots, we set the dilaton mass to mσ = 0.5 f and the relative velocity to vrel = 0.1. The wiggles
are consequences of Sommerfeld effects, cf. 3.3.

– 59 –



J
H
E
P
0
7
(
2
0
2
2
)
0
8
4

σσ

WW,ZZ

hh

tt

bb

σvtot

σvuni
max

10-2 10-1 1 10
10-6

10-4

10-2

1

102

104

106

mDM /f

σ
v D
M
D
M
/3
x1
0
-
26
cm

3
/s

pNGB DM - Z = 1 - top breaking

m
D
M

~
λ
h
η
f/
2

m
D
M

≃
m
h
/2

m
D
M

≃
m
σ
/2

f = 1 TeV

v = 0.1

λhη = 0.065

t, b ∈ 6 of SO(6)

(ct , cb) = (1/2, 1/2)

σσ

WW,ZZ

hh tt

bb

σvtot

σvuni
max

10-2 10-1 1 10 102
10-10

10-8

10-6

10-4

10-2

1

102

mDM [TeV]

σ
v D
M
D
M
/3
x1
0
-
26
cm

3
/s

pNGB DM - Z = 1 - top breaking

λhη = 0.065

t, b ∈ 6 of SO(6)
(ct , cb) = (1/2, 1/2)

mσ = 0.5 f
mDM = 0.05 f
v = 0.1

m
D
M
≃
m
h
/2

σσ

WW,ZZ

hh

tt

bb

σvtot

σvuni
max

10-2 10-1 1 10
10-6

10-4

10-2

1

102

104

106

mDM /f

σ
v D
M
D
M
/3
x1
0
-
26
cm

3
/s

pNGB DM - Z = 1 - bottom breaking

m
D
M

≃
m
h
/2

m
D
M

≃
m
σ
/2

f = 1 TeV

v = 0.1

λhη = 10-4

t, b ∈ 6 of SO(6)

(ct , cb) = (0, 1/2)

hh

σσ

WW,ZZ

tt

bb

σvtot

σvuni
max

10-2 10-1 1 10 102
10-10

10-8

10-6

10-4

10-2

1

102

mDM [TeV]

σ
v D
M
D
M
/3
x1
0
-
26
cm

3
/s

pNGB DM - Z = 1 - bottom breaking

λhη = 10-4

t, b ∈ 6 of SO(6)

(ct , cb) = (0, 1/2)

mσ = 0.5 f
mDM = 0.05 f
v = 0.1

m
D
M
≃
m
h
/2

Figure 20. DM annihilation cross-section in the scenario where DM is a O(6)/O(5) pNGB. We
consider the pNGB shift symmetry to be explicitly broken either by the top interactions (top) or by
the bottom ones (bottom). On the left panels, we fix the confining scale to f = 1 TeV while on the
right panels, we fix it to f = 20 mDM. In all plots, we set the dilaton mass to mσ = 0.5 f and the
relative velocity to vrel = 0.1. The wiggles are consequences of Sommerfeld effects, cf. 3.3.
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E.1 Fermion

We compute

σvrel(DMDM→ hh) = vrel

m2
DM(S + 2m2

h)2
√

(S − 4m2
h)(S − 4m2

DM)
64π(Zf)4S [(S −m2

σ)2 +m2
σΓ2

σ] (E.8)

=⇒
vrel�1

v2
rel

mDM

√
m2

DM −m2
h(2m2

DM +m2
h)2

32π(Zf)4 [(4m2
DM −m2

σ)2 +m2
σΓ2

σ] (E.9)

=⇒
mDM�mother

v2
rel

m2
DM

128π(Zf)4 . (E.10)

σvrel(DMDM→ ff) = vrelNc

m2
fm

2
DM(S − 4m2

f )3/2√S − 4m2
DM

16π(Zf)4S [(S −m2
σ)2 +m2

σΓ2
σ] (E.11)

=⇒
vrel�1

v2
relNc

m2
fmDM(m2

DM −m2
f )3/2

8π(Zf)4 [(4m2
DM −m2

σ)2 +m2
σΓ2

σ] (E.12)

=⇒
mDM�mother

v2
relNc

m2
f

128π(Zf)4 . (E.13)

σvrel(DMDM→WW ) = 2σvrel(DMDM→ ZZ)|mW↔mZ (E.14)

= vrel

m2
DM

√
S − 4m2

W

√
S − 4m2

DM

32π(Zf)4S

12m4
W − 4m4

WS + S2

(S −m2
σ)2 +m2

σΓ2
σ

(E.15)

=⇒
vrel�1

v2
rel

mDM

√
m2

DM −m2
W

16π(Zf)4
3m4

W + 4m4
DM − 4m2

DMm
2
W

(4m2
DM −m2

σ)2 +m2
σΓ2

σ

(E.16)

=⇒
mDM�mother

v2
rel

m2
DM

64π(Zf)4 . (E.17)

σvrel(DMDM→σσ)

= vrelm
2
DM

[
(S−2m2

σ)
√

(S−4m2
σ)(S−4m2

DM)
[
m8
σ(25S−66m2

DM)

+2m6
σm

2
DM(−3Γ2

σ+136m2
DM−64S)+m4

σ(−32m6
DM+32m4

DM(Γ2
σ+S)+19m2

DMS
2)

+4m2
σm

4
DM(16m2

DMS−Γ2
σ(8m2

DM+S))−4m4
DMS

2(8m2
DM+S)

]
−4m2

DM(m4
σ−4m2

σm
2
DM+m2

DMS)
[
(S−m2

σ)[34m6
σ+2m4

σ(5S−72m2
DM)

+m2
σ(32m4

DM+48m2
DMS−15S2)+S(−32m4

DM+16m2
DMS+S2)]

−Γ2
σm

2
σ(6m4

σ−4m2
σ(4m2

DM+S)−32m4
DM+16m2

DMS+S2)
]
×

ArcCoth
(

2m2
σ−S√

(S−4m2
σ)(S−4m2

DM)

)]
/
[
64π(Zf)4S(S−2m2

σ)(S−4m2
DM)×

(m4
σ−4m2

σm
2
DM+m2

DMS)(Γ2
σm

2
σ+(S−m2

σ)2)
]

(E.18)
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=⇒
vrel�1

v2
relmDM

√
m2

DM−m2
σ

(
75m12

σ −680m10
σ m

2
DM+2672m8

σm
4
DM

+32m6
σm

4
DM(Γ2

σ−187m2
DM)+32m4

σ(255m8
DM−4Γ2

σm
6
DM)

+16m2
σm

8
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σ−400m2
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DM
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384π(Zf)4(m2
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σ(Γ2
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DM)

]
(E.19)
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mDM�mother

v2
rel

3m2
DM

128π(Zf)4 . (E.20)

E.2 Scalar

We compute

σvrel(DMDM→ hh) = vrel

m4
DM

√
S − 4m2

h(S + 2m2
h)2

8π(Zf)4S
√
S − 4m2
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DM
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σvrel(DMDM→ ff) = vrelNc

m2
fm

4
DM(S − 4m2

f )3/2

2π(Zf)4S
√
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σvrel(DMDM→WW ) = 2σvrel(DMDM→ ZZ)|mW↔mZ (E.27)

= vrel
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σvrel(DMDM→ σσ)

= vrel

[
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√
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E.3 Vector

We compute

σvrel(DMDM→ hh) = vrel

√
S − 4m2

h(S + 2m2
h)2

288π(Zf)4S
√
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DM

12m4
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σvrel(DMDM→ ff) = vrelNc

m2
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f )3/2

72π(Zf)4S
√
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σvrel(DMDM→WW )
= 2σvrel(DMDM→ ZZ)|mW↔mZ (E.40)

= vrel
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σvrel(DMDM→ σσ)

= vrel(12m4
DM − 4m2

DMS + S2)
[
16m2

DM(m4
σ − 4m2
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DMS)×
[
Γ2
σm

2
σ(S − 2(m2

σ +m2
DM)) + (m2

σ − S)
(
8m4

σ − 2m2
σ(m2

DM + S)

+ S(2m2
DM − S)

)]
ArcCoth

(
2m2

σ − S√
(S − 4m2

σ)(S − 4m2
DM)

)

− (2m2
σ − S)

√
(S − 4m2

σ)(S − 4m2
DM)

[
16m8

σ +m6
σ(Γ2

σ − 64m2
DM + 8S)

+m4
σ(8m4

DM − 4m2
DM(Γ2

σ + 4S) + S2) +m2
σm

2
χ(8m2

χ(Γ2
σ − 2S) + S(Γ2

σ + 4S))

+m2
χS

2(8m2
χ + S)

]]
/

[
288π(Zf)4S(S − 2m2

σ)(S − 4m2
DM)×

(m4
σ − 4m2

σm
2
DM +m2

χS)(Γ2
σm

2
σ + (S −m2

σ)2)
]

(E.44)

=⇒
vrel�1

mDM

√
m2

DM −m2
σ

(
Γ2
σm

2
σ(m2

σ + 2m2
DM)2 + 16(m4

σ − 2m2
σm

2
DM + 2m4

DM)2
)

48π(Zf)4(m2
σ − 2m2

DM)2(Γ2
σm

2
σ + (m2

σ − 4m2
DM)2)

(E.45)
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F Direct-detection cross-sections

We compute the DM-nucleon scattering cross-section for fermion, scalar and vector DM
resonance. The constants yn and cn are defined in eq. (3.31) and eq. (3.41), respectively.

F.1 Fermion

σ(DMn→ DMn) = y2
n

2π

(
mnmDM

mn +mDM

)2 (mDM

Zf

)2 1
m4
σ

. (F.1)
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F.2 Vector

σ(DMn→ DMn) = 3y2
n

2π

(
mnmDM

mn +mDM

)2 (mDM

Zf

)2 1
m4
σ

. (F.2)

F.3 Scalar

σ(DMn→ DMn) = y2
n

π

(
mnmDM

mn +mDM

)2 (mDM

Zf

)2 1
m4
σ

. (F.3)

F.4 pNGB

σ(DMn→ DMn) '
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bottom-breaking ,

c2
n

π
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top-breaking ,

(F.4)

σ(DMn→ DMn) ' y2
n

π

(
mnmDM

mn +mDM

)2 (mDM

Zf

)2 1
m4
σ

+ c2
n

π

(
mn

mn +mDM

)2
. (F.5)

G Dilaton decay width

We compute the dilaton decay width into SM. The decay width Γ(σ → hh) is different
from [47] due to the coupling of the dilaton to the Higgs kinetic mixing in eq. (3.11), needed
in order to respect the Goldstone equivalence theorem

Γ(σ → hh) ∼
mσ�mZ

Γ(σ → ZZ). (G.1)

G.1 Into WW and ZZ

Γ(σ →WW ) = m4
W
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√
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Γ(σ → ZZ) = m4
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Z

)
(G.4)

=⇒
mσ�mZ

m3
σ

32π(Zf)2 . (G.5)

G.2 Into Higgs

Γ(σ → hh) = m3
σ

32π(Zf)2

(
1− 4m

2
h

m2
σ

)1/2(
1 + 2m

2
h

m2
σ

)2

(G.6)

=⇒
mσ�mh

m3
σ

32π(Zf)2 . (G.7)
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G.3 Into fermions

Γ(σ → ff) = Nc

mσm
2
f

8π(Zf)2

(
1− 4

m2
f

m2
σ

)3/2

. (G.8)

G.4 Into pNGB DM

Γ(σ → ηη) = m3
σ

32π(Zf)2

(
1− 4m

2
DM

m2
σ

)1/2(
1 + 2m

2
DM

m2
σ

)2

(G.9)

=⇒
mσ�mDM

m3
σ

32π(Zf)2 . (G.10)
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