The SARS-CoV-2 pandemic has galvanized the interest of the scientific community toward methodologies apt at predicting the trend of the epidemiological curve, namely, the daily number of infected individuals in the population. One of the critical issues, is providing reliable predictions based on interventions enacted by policy-makers, which is of crucial relevance to assess their effectiveness. In this paper, we provide a novel data-driven application incorporating sub-symbolic knowledge to forecast the spreading of an epidemic depending on a set of interventions. More specifically, we focus on the embedding of classical epidemiological approaches, i.e., compartmental models, into Deep Learning models, to enhance the learning process and provide higher predictive accuracy.

Informed Deep Learning for Epidemics Forecasting

Federico Baldo
Primo
Software
;
Michele Iannello
Secondo
Software
;
Michele Lombardi
Penultimo
Methodology
;
Michela Milano
Ultimo
Conceptualization
2022

Abstract

The SARS-CoV-2 pandemic has galvanized the interest of the scientific community toward methodologies apt at predicting the trend of the epidemiological curve, namely, the daily number of infected individuals in the population. One of the critical issues, is providing reliable predictions based on interventions enacted by policy-makers, which is of crucial relevance to assess their effectiveness. In this paper, we provide a novel data-driven application incorporating sub-symbolic knowledge to forecast the spreading of an epidemic depending on a set of interventions. More specifically, we focus on the embedding of classical epidemiological approaches, i.e., compartmental models, into Deep Learning models, to enhance the learning process and provide higher predictive accuracy.
2022
Frontiers in Artificial Intelligence and Applications
86
99
Federico Baldo, Michele Iannello, Michele Lombardi, Michela Milano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/907947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact