Vector architectures are gaining traction for highly efficient processing of data-parallel workloads, driven by all major ISAs (RISC-V, Arm, Intel), and boosted by landmark chips, like the Arm SVE-based Fujitsu A64FX, powering the TOP500 leader Fugaku. The RISC-V V extension has recently reached 1.0-Frozen status. Here, we present its first open-source implementation, discuss the new specification's impact on the micro-architecture of a lane-based design, and provide insights on performance-oriented design of coupled scalar-vector processors. Our system achieves comparable/better PPA than state-of-the-art vector engines that implement older RVV versions: 15% better area, 6% improved throughput, and FPU utilization >98.5% on crucial kernels.
Perotti M., Cavalcante M., Wistoff N., Andri R., Cavigelli L., Benini L. (2022). A 'New Ara' for Vector Computing: An Open Source Highly Efficient RISC-V V 1.0 Vector Processor Design [10.1109/ASAP54787.2022.00017].
A 'New Ara' for Vector Computing: An Open Source Highly Efficient RISC-V V 1.0 Vector Processor Design
Benini L.
2022
Abstract
Vector architectures are gaining traction for highly efficient processing of data-parallel workloads, driven by all major ISAs (RISC-V, Arm, Intel), and boosted by landmark chips, like the Arm SVE-based Fujitsu A64FX, powering the TOP500 leader Fugaku. The RISC-V V extension has recently reached 1.0-Frozen status. Here, we present its first open-source implementation, discuss the new specification's impact on the micro-architecture of a lane-based design, and provide insights on performance-oriented design of coupled scalar-vector processors. Our system achieves comparable/better PPA than state-of-the-art vector engines that implement older RVV versions: 15% better area, 6% improved throughput, and FPU utilization >98.5% on crucial kernels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.