In the past twenty years, we have witnessed an unprecedented production of data world-wide that has generated a growing demand for computing resources and has stimulated the design of computing paradigms and software tools to efficiently and quickly obtain insights on such a Big Data. State-of-the-art parallel computing techniques such as the MapReduce guarantee high performance in scenarios where involved computing nodes are equally sized and clustered via broadband network links, and the data are co-located with the cluster of nodes. Unfortunately, the mentioned techniques have proven ineffective in geographically distributed scenarios, i.e., computing contexts where nodes and data are geographically distributed across multiple distant data centers. In the literature, researchers have proposed variants of the MapReduce paradigm that obtain awareness of the constraints imposed in those scenarios (such as the imbalance of nodes computing power and of interconnecting links) to enforce smart task scheduling strategies. We have designed a hierarchical computing framework in which a context-aware scheduler orchestrates computing tasks that leverage the potential of the vanilla Hadoop framework within each data center taking part in the computation. In this work, after presenting the features of the developed framework, we advocate the opportunity of fragmenting the data in a smart way so that the scheduler produces a fairer distribution of the workload among the computing tasks. To prove the concept, we implemented a software prototype of the framework and ran several experiments on a small-scale testbed. Test results are discussed in the last part of the paper.
Di Modica G., Tomarchio O. (2022). A Hierarchical Hadoop Framework to Process Geo-Distributed Big Data. BIG DATA AND COGNITIVE COMPUTING, 6(1), 1-26 [10.3390/bdcc6010005].
A Hierarchical Hadoop Framework to Process Geo-Distributed Big Data
Di Modica G.
;
2022
Abstract
In the past twenty years, we have witnessed an unprecedented production of data world-wide that has generated a growing demand for computing resources and has stimulated the design of computing paradigms and software tools to efficiently and quickly obtain insights on such a Big Data. State-of-the-art parallel computing techniques such as the MapReduce guarantee high performance in scenarios where involved computing nodes are equally sized and clustered via broadband network links, and the data are co-located with the cluster of nodes. Unfortunately, the mentioned techniques have proven ineffective in geographically distributed scenarios, i.e., computing contexts where nodes and data are geographically distributed across multiple distant data centers. In the literature, researchers have proposed variants of the MapReduce paradigm that obtain awareness of the constraints imposed in those scenarios (such as the imbalance of nodes computing power and of interconnecting links) to enforce smart task scheduling strategies. We have designed a hierarchical computing framework in which a context-aware scheduler orchestrates computing tasks that leverage the potential of the vanilla Hadoop framework within each data center taking part in the computation. In this work, after presenting the features of the developed framework, we advocate the opportunity of fragmenting the data in a smart way so that the scheduler produces a fairer distribution of the workload among the computing tasks. To prove the concept, we implemented a software prototype of the framework and ran several experiments on a small-scale testbed. Test results are discussed in the last part of the paper.File | Dimensione | Formato | |
---|---|---|---|
BDCC-06-00005.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.