
����������
�������

Citation: Di Modica, G.; Tomarchio,

O. A Hierarchical Hadoop

Framework to Process

Geo-Distributed Big Data. Big Data

Cogn. Comput. 2022, 6, 5. https://

doi.org/10.3390/bdcc6010005

Academic Editor: Verena Kantere

Received: 8 November 2021

Accepted: 30 December 2021

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

A Hierarchical Hadoop Framework to Process Geo-Distributed
Big Data
Giuseppe Di Modica 1,† and Orazio Tomarchio 2,*,†

1 Department of Computer Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy;
giuseppe.dimodica@unibo.it

2 Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale A. Doria 6,
95125 Catania, Italy

* Correspondence: orazio.tomarchio@unict.it
† These authors contributed equally to this work.

Abstract: In the past twenty years, we have witnessed an unprecedented production of data world-
wide that has generated a growing demand for computing resources and has stimulated the design
of computing paradigms and software tools to efficiently and quickly obtain insights on such a Big
Data. State-of-the-art parallel computing techniques such as the MapReduce guarantee high perfor-
mance in scenarios where involved computing nodes are equally sized and clustered via broadband
network links, and the data are co-located with the cluster of nodes. Unfortunately, the mentioned
techniques have proven ineffective in geographically distributed scenarios, i.e., computing contexts
where nodes and data are geographically distributed across multiple distant data centers. In the
literature, researchers have proposed variants of the MapReduce paradigm that obtain awareness of
the constraints imposed in those scenarios (such as the imbalance of nodes computing power and of
interconnecting links) to enforce smart task scheduling strategies. We have designed a hierarchical
computing framework in which a context-aware scheduler orchestrates computing tasks that leverage
the potential of the vanilla Hadoop framework within each data center taking part in the computation.
In this work, after presenting the features of the developed framework, we advocate the opportunity
of fragmenting the data in a smart way so that the scheduler produces a fairer distribution of the
workload among the computing tasks. To prove the concept, we implemented a software prototype
of the framework and ran several experiments on a small-scale testbed. Test results are discussed in
the last part of the paper.

Keywords: big data; MapReduce; hierarchical Hadoop; geographical computing environment; job
scheduling

1. Introduction

In recent years, the continuous increase in data generated and captured by organi-
zations for very different purposes has attracted great attention from both academia and
industry. The appropriate management of huge amounts of structured or unstructured
data has become a key research challenge as witnessed by the explosion of research papers
in this area [1–3]. Although much effort has been put into devising effective solutions for
crunching Big Data in a single, yet powerful cluster of nodes [4], there has lately been a
growing demand for processing and analyzing data that are generated and stored across
geo-distributed data centers, to also meet the emerging challenges of green and sustainable
computing [5].

Such a scenario calls for innovative and smarter computing frameworks capable of
coping with a tough environment characterized by medium-to-big sized data volume
spread across multiple heterogeneous data centers connected to each other via geographic
network links. It is quite intuitive that the old strategy of aggregating such (big) distributed
data into one single data center for elaboration is inefficient as well as not sustainable [6,7].

Big Data Cogn. Comput. 2022, 6, 5. https://doi.org/10.3390/bdcc6010005 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc6010005
https://doi.org/10.3390/bdcc6010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-0298-7828
https://orcid.org/0000-0003-4653-0480
https://doi.org/10.3390/bdcc6010005
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc6010005?type=check_update&version=1


Big Data Cogn. Comput. 2022, 6, 5 2 of 26

The research community addressed this problem by proposing solutions which mainly
inspire to the MapReduce paradigm [8]. However, current MapReduce implementations
such as the Hadoop framework [9] fail to provide effective “resource-aware” job scheduling
for clusters running in geographically dispersed data centers [10], thus leading to unpre-
dictable and often poor performance. Poor performance is due to both the heterogeneity of
clusters’ computing resources and the very scarce bandwidth of the links interconnecting
these clusters if compared to that of the computing environments where Hadoop has tradi-
tionally been deployed (i.e., a single cluster composed of homogeneous nodes networked
by a high-speed LAN).

Solutions to this issue have been proposed by many researchers [11–13]. In Section 6,
we propose a survey of some of the relevant literature proposals in the field. A thorough
analysis of such works revealed that authors took into account only partial information of
the actual geographical context. The approach we propose can be distinguished in that it
leverages the whole set of the context information.

In [14], we introduced our proposal called Hierarchical Hadoop Framework (H2F).
The proposal takes into account the actual heterogeneity of nodes, network links and data
distribution among geographically distant sites. The proposed computing framework
adopts a hierarchical approach, where a Top-level layer takes care of serving the submitted
jobs and coordinates the actual computing resources that populate the Bottom-level layer.
A scheduler splits a submitted job into multiple MapReduce sub-jobs which are then placed
on Bottom-level resources (Sites) where target data originally reside. In [15], we conducted
a study aimed at assessing the potential benefit of fragmenting the data residing in the data
centers into smaller pieces and flexibly redistributing those pieces among the data centers
in such a way that would benefit the computing performance of the overall MapReduce job.

Motivated by the results of the mentioned study of the impact of data fragmentation on
the job performance, we decided to make the job scheduler’s strategy capable of exploiting
such a powerful feature. In this paper, we propose the design and implementation of a
smart data fragmentation strategy and present the results of preliminary tests. The results
prove that the enhanced strategy can bring a considerable shortening of the job makespan.
Further tests were also run in order to assess how powerful the proposed approach is with
respect to a vanilla Hadoop framework in imbalanced geographical computing contexts.

The remainder of the paper is organized as follows: In Section 2, we briefly introduce
the background of the work and depict a motivating scenario. In Section 3, we discuss the
design principles of the framework. The novel data fragmentation strategy is addressed
in Section 4. In Section 5, we present the results of the experiments conducted on a real
test-bed. A critical review of the literature is conducted in Section 6. Final remarks and
conclusion are reported in Section 7.

2. Background and Motivating Scenario

The number of applications that need to access to large volumes of distributed data
is nowadays more and more increasing. Huge amount of data are generated by social
network applications worldwide. Those data are usually stored on several data centers
typically located in different regions. Thus, in order to obtain effective and timely re-
sults, the analysis process of these geographically dispersed data has to be thoroughly
designed [16]. Multinational retailers are used to generate up to petabytes of data in one
day. Data generated by the company’s points of presence are shifted to geographically
distributed data centers where they are promptly processed. Again, since data are natively
distributed, data processing strategies usually employed in a single-site scenario are not
effective. Many IoT-based applications such as, e.g., climate monitoring and simulation
handle huge volumes of data sensed from multiple geographic locations. If computing
resources reside close to the sensors, as nowadays happens in many fog computing scenar-
ios [17], the exploitation of local computing power would be a wiser choice than moving
all data from the distributed locations to a central computing unit.



Big Data Cogn. Comput. 2022, 6, 5 3 of 26

Big Data processing frameworks such as MapReduce [8] and Hadoop [9] have been
designed to efficiently analyze large datasets stored on a single data center. Apache Hadoop,
which is the main open-source platform implementing the MapReduce parallel computing
paradigm, leverages the power provided by many computing nodes to increase the data
analysis speed. Unfortunately, Hadoop offers high computing performance only for data
stored on a single data center, realized by clusters of homogeneous computing resources,
connected by high-speed network links [7].

Mining big volumes of data natively distributed over multiple and often distant
places is the common need of the “geographical” scenario depicted above. In this scenario,
computing resources are heterogeneous, are physically located in the considered places
along with portion of the whole data and are interconnected with each other by means of
network links that are far slower than those interconnecting the nodes of a cluster. None of
the constraints under which Hadoop can guarantee a boost of performance applies.

The work discussed in this paper addresses the above-mentioned issues. Specifically,
the focus is put on three dimensions of imbalance: (1) the non-uniform size of the data
scattered throughout the computing context, (2) the inhomogeneous capability of the
computing resources on which the jobs run and (3) the uneven speed of the network links
interconnecting the computing resources. Such a threefold imbalance exacerbates the
problem of executing an efficient computation on Big Data.

In the following section, we present a motivating scenario that guided us through the
design of the proposed solution. Let us assume that Company A is running its business
in multiple countries worldwide, and that in every country, a point of presence (Site,
from now on) collects data from the company’s processes. Each Site runs a local data
center equipped with some computing resources. Computing resources owned by a Site
are interconnected by means of high-speed links (intra-Site links) to form a powerful
cluster. Sites are connected to one another via a Virtual Private Network (VPN) set up over
geographic network links (inter-Site links). In addition, all resources (both computing and
links) are virtualized in order to form a cloud of resources that can be flexibly configured
according to the need.

Suppose that each Site produces some raw data that need to be mined and that the
amount of such data varies from Site to Site. Suppose also that the computing power
that each Site is capable of devoting to the mining purpose is different from Site to Site.
A snapshot of the just-described situation is represented in Figure 1. The company needs a
way to quickly crunch all distributed data by means of some parallel computing techniques
that exploit, at best, the heterogeneous resources provided by its own computing infras-
tructure. Basically, our proposal grounds on the idea of giving all Sites a mining task that is
proportional to its computing power, i.e., the more powerful the Site the more data it has to
mine. Since the distribution of the data does not follow the distribution of the computing
power (a big amount of data might happen to reside in a low-power Site), the solution we
propose features the shift of data from low-powered Sites (e.g., Site1) to high-powered Sites
(e.g., Site4). Since those data movements would happen through inter-Site links, which are
known to be slow, a cost is incurred in terms of time wasted. In the rest of the paper, we try
to provide an answer to the problem of how to best exploit the most powerful Sites while
minimizing the cost incurred for shifting data from Site to Site.

We also remark that the proposal presented in this paper is application-agnostic, i.e., it
does not aim at devising a solution that fits a specific application or application pattern.
Rather, in the proposed model, an application is seen as a black box capable of consuming
some input data and producing some output data in a given time span, regardless of
the algorithm that implements the data processing. We characterize applications by their
“computing profile”, which is the application’s computing footprint calculated by just
observing the black box and analyzing the data input/output balance and processing
time. Based on this feature and other parameters of the distributed context environment,
the framework is capable of suggesting a job schedule that optimizes any application’s
performance. With that said, the framework does not prevent that further performance



Big Data Cogn. Comput. 2022, 6, 5 4 of 26

enhancements can be achieved by refining the application’s algorithm implementing the
computation itself.

Computing node

Raw data

inter-Site link (2-10 Mb/s)

intra-Site link (1-10 Gb/s)

c

S4

S3

S2

S1

Figure 1. Motivating scenario.

3. Hierarchical Hadoop Framework Design
3.1. System Architecture

In the MapReduce computing paradigm, a job is a computation request that can be
submitted for processing [8]. When a job is submitted, a scheduler splits it in many tasks
that are mapped to available computing nodes of a cluster. A typical measure of the
performance of a job processing is the makespan, i.e., the time taken for the completion of a
job processing. Besides the size of the data being processed, that time is impacted by (i) the
job’s execution flow devised by the scheduler (the tasks sequence) and (ii) the computing
power provided by the cluster nodes hosting the tasks.

In an imbalanced computing context, things become more complicated. When a job
is submitted, the question is how to best schedule imbalanced resources over unevenly
distributed data in such a way that the job completion time is minimized. We address
the context imbalance problem by adopting a hierarchical approach to the parallel data
computation. According to this approach, a Top-level layer is responsible for running the
logic to sense the computing context’s features and orchestrating smart computing plans,
while a Bottom-level layer is in charge of enforcing the plans while exploiting well-known
parallel computing techniques. The Top-level layer, therefore, is where smart decisions
must be made in respect to, e.g., which of the many chunks of sparse data should be
mined by a given computing resource. Basically, instead of letting the data be computed by
resources that reside at the same data place, the intuition here is to move data wherever the
largest possible computing power is available, provided that the benefit gained from the
exploitation of the best computing resources overcomes the cost incurred for moving the
data close to those resources. In order to support smart decisions at this level, we designed
and implemented a graph-based meta-model capable of capturing the characteristics of the
distributed computing contexts (in terms of computing resources, network links and data
distribution) and of representing the job’s potential execution paths in a structured way (see
Section 3.2.1 for details). The Bottom-level layer, instead, is where the actual computation
occurs, and is populated by dummy computing resources capable of running naive parallel
computing algorithms.

In summary, the H2F is based on the idea of obtaining the most powerful computing
resources to (a) attract as many data chunks as possible, (b) aggregate them and (c) run
plain MapReduce routines on the overall gathered data. The proposed approach does not



Big Data Cogn. Comput. 2022, 6, 5 5 of 26

intend to deliver a new parallel computing paradigm for imbalanced computing contexts.
It rather aims at preserving and exploiting the potential of the current parallel computing
techniques, even in tough computing context, by creating two management levels that cater
to the needs of smart computation and the needs for fast computation, respectively.

The solution we propose is depicted in the scenario of Figure 2. Computing Sites
populate the bottom level of the hierarchy. Each Site owns a certain amount of data and
is capable of running plain Hadoop jobs. Upon the reception of a sub-job request from
the Top-level, a Site performs the whole MapReduce execution flow on the local cluster(s)
and returns the result back to the Top-level. The Top-level Manager owns the system’s
business logic and is in charge of the management of the imbalanced computing context.
Upon the submission of a Top-level job, the business logic schedules the set of sub-jobs
to be spread throughout the distributed context, collects the sub-job results and packages
the overall calculation result. In the figure, a typical execution flow, which is triggered by
the submission of a Top-level job, is described by the numbered arrows. This specific case
involves a shift of data from one Site to another Site (namely, from Site1 to Site4) and the
run of local MapReduce sub-jobs on two Sites (Site4 and Site2). In the considered case, Site3
did not take part to the computation. Here follows a step-by-step description of all actions
depicted in Figure 2 which the system had to take in order to serve the Top-level job:

1. The Top-Level Manager receives a job submission which requires computation of data
residing on Site1, Site2 and Site4, respectively.

2. A Top-level Job Execution Plan (TJEP) is generated using information on (a) the status
of the Bottom-level layer such as the distribution of the data set among Sites, (b) the
current computing availability of Sites, (c) the topology of the network and (d) the
current capacity of its links.

3. The Top-Level Manager executes the TJEP. Following the plan instructions, it orders
Site1 to shift its own data to Site4.

4. The actual data shift from Site1 to Site4 happens.
5. According to the plan, the Top-Level Manager sends a message to activate the run

of sub-jobs on the Sites where the interested data are currently stored. In particular,
Top-level Map tasks are triggered to run on Site2 and Site4, respectively, (we reiterate
that a Top-Level Map task corresponds to a MapReduce sub-job).

6. Site2 and Site4 executes local Hadoop sub-jobs on their respective data sets.
7. Site2 and Site4 send the output of their local executions to the Top-Level Manager.
8. A procedure run by the Top-Level Manager is fed with the partial results elaborated

by the Bottom-Level layer and performs a global data reduction.
9. The final output is returned to the requester.

The whole process is transparent to the requester, who just has to provide the job and
a pointer to the data to be processed. The design of the job execution process depicted in
Figure 2 takes into consideration the imbalances of the distributed computing infrastructure
in terms of computing power that the Sites are provided with, bandwidth of the inter-Site
network links and data distribution. In this work, we assume that all Sites are equipped
with mass-storage devices ensuring comparable I/O performance. The procedure we
designed to make an estimate of the application profile [18] leverages this assumption.

The H2F logical architecture (see Figure 3) is made up of several modules that are
in charge of taking care of the steps of the job’s execution flow depicted in Figure 2. In
actuality, each Site is an independent system that runs an instance of the architecture in one
of two distinctive modes according to the role to be played. Out of the participating Sites,
only one can activate the orchestrating mode that lets the Site play the Top-Level Manager
role; the Top-Level Manager owns the “smart” orchestrating business logic of the system
and coordinates all the system activities. The rest of Sites have to activate the computing
mode that entitles them to act as Bottom-Level Executors, i.e., those who execute the dirty
work of data crunching.



Big Data Cogn. Comput. 2022, 6, 5 6 of 26

S3

Bottom level

Top level

Top Level Manager

Top level job

1

Generate TJEP
2

Move data
3

S4 S1

S2

4

5

5MapReduce

MapReduce

6

6

7

7

Global Reduce
8

Top level jobResult

9

Top level job

Execute Top-level
Map Task

Push Top-level
Map Result

Raw Data Transfer

Figure 2. Job execution flow.

Figure 3. Overall architecture.

The Top-Level Manager role is taken by enabling the following modules:

• Master: it receives the Top-level job execution request, extracts the job information
and passes it to the Orchestrator, which in its turn uses it to build the TJEP. The Master
is in charge of enforcing the TJEP and, once the job has been processed by the Global
Reducer, of delivering the final result to the requester.

• Orchestrator: it builds the TJEP by combining information from the the submitted
job and the execution context (such as, e.g., the Sites’ available computing power and
inter-Site network capacity.

• Global Reducer: it receives the output of the sub-jobs computation from the local Sites
and runs the final reduction.



Big Data Cogn. Comput. 2022, 6, 5 7 of 26

The Bottom-Level Executor role is activated by turning on the following modules:

• Node Coordinator: owns all the information on the node (Site) status.
• File Manager: it handles data blocks loading and storage of data blocks, while also

keeping track of files namespace.
• Hadoop Handler: it exposes vanilla Hadoop’s APIs. Basically, this module decou-

ples the system from the underlying Hadoop-based computing platform. This way,
the framework stays independent of the Hadoop flavor deployed in the local Site.

• Network Manager: it handles inter-Sites communication.

3.2. Jobs Scheduling

The TJEP built by the Orchestrator includes instructions on data redistribution among
Sites as well as sub-jobs placement. To build the TJEP, the Orchestrator calls on a schedul-
ing strategy that is capable of predicting which execution path ensures the highest job
performance in terms of completion time.

Upon the submission of a new job, the job scheduler seeks for the resources that are
expected to maximize the job performance. In the case that multiple jobs request the same
resource at the same time, the first-come-first-served approach is enforced. While the
computing resource assigned to a job is intended for the exclusive use of the job, this is not
the case of network resources (Site-to-Site links), which are instead shared among the jobs
that need to move data among the Sites. As a consequence, a job might have to wait for a
computing resource to become available if the resource itself is momentarily accessed by
another job. In addition, it might experience a further delay if its target data needs to be
moved via a network link that is being shared with other jobs’ data.

In the following, we provide a simple example of how the scheduling works in the
case of multiple jobs requesting the service. The reader may refer to the reference scenario
represented in Figure 4.

R
1 R

2

S
1

S
2

S
3

S
4

S
5

L
111

L
112

L
113

L
1122

L
224

L
225

Legend

S
x

R
x

L
x

Node

Router

Link

Job 1’s data 

Job 2’s data 

Job 3’s data 

Figure 4. Reference scenario.

As a distinctive feature introduced by this proposal, a job’s data can be logically and
physically split into smaller data blocks of fixed size. Section 4 provides technical details
on how data fragmentation is carried out. Upon a job submission, its target data can be
conveniently fragmented and distributed to multiple Sites where sub-jobs eventually do
the real computation.



Big Data Cogn. Comput. 2022, 6, 5 8 of 26

To properly serve a job request, the scheduler must look up the resource usage plan
of jobs that are being served. In the example, we show three independent jobs served
according to their time of arrival. In Figure 5, we depict how the scheduler has handled
the three execution requests. Based on the data fragmentation principle, each job is split
into sub-jobs that run on the Sites that hold the fragmented data. For instance, Job1 is split
into Job1.1, Job1.2 and Job1.3 which run on Sites S1, S2 and S3, respectively. In principle,
a sub-job may not start its execution on a Site until data are available at that Site. This is
what happens to Job1.2, whose start has been delayed (notice the time gap between Job1’s
submission time and Job1.2’s start time). For what concerns Job3, its sub-jobs run right after
Job3 submission, as no data shift has been decided by the TJEP. It is worth noting that while
Job1’s sub-jobs may run straightaway because of availability of computing resources at the
job submission time, Job3’s sub-jobs’ start is delayed until their computing resources are
available (Job3.1 waits until Job1.2 releases S2, Job3.2 waits until Job2.2 releases S4, and Job3.3
waits until Job2.3 releases S5).

S1

S2

S3

S4

S5

Job1 Submission 
Time

Job2 Submission 
Time

Job3 Submission 
Time

SubJob 3.1

SubJob 3.2

SubJob 3.3

SubJob 2.1

SubJob 2.2

SubJob 2.3

SubJob 1.3

SubJob 1.2

SubJob 1.1

Job1

Job2

Job3

SubJob 2.1
Waiting Time

SubJob 3.1
Waiting Time

SubJob 3.2
Waiting Time

SubJob 3.3
Waiting Time

Figure 5. Multi-job scheduling.

3.2.1. Modeling Job’s Execution Paths

In order to guarantee a requesting job with the best execution path, three aspects
must be taken into account: (1) the static features of the imbalanced computing context;
(2) the overall resource occupancy at the job submission time; and (3) the features of the
computation enforced by the job. We designed a graph-based representation model of a
job’s execution path which accounts for the just-mentioned aspects.

By leveraging this model, the job scheduler is capable of automatically generating a
finite number of potential job execution paths and then searching for the one that minimizes
the job makespan. A job execution path is modeled via a sequence of actions that drive the
job execution. Actions may be of three types: Site-to-Site data transfer, on-Site data elabora-
tion and global reduction of all elaborated data. We have spoken of “potential” execution
paths as there may be many alternative paths that a job may follow in its execution.

A generic job’s execution path is then represented by way of a graph whose nodes
may represent a Data Computing Element (Site) or a Data Transport Element (network link)
or a Queue Element. Edges between the nodes are used to model the temporal sequence
of nodes in an execution path (see Figure 6). The basic idea is that each node represents
an event that takes some input data, produces some output data (whose size may be
different than the input’s) and consumes some time in doing that. Thus, the overall job’s
execution time represented by the graph can be estimated by computing and gathering
the time consumed in all the graph’s nodes. A Data Computing Element models the data
elaboration by a computing element. It takes input data and outputs a data flow whose size
is generally different than the input’s. The time consumed by this node depends on (a) the



Big Data Cogn. Comput. 2022, 6, 5 9 of 26

computing capacity of the Site it represents, (b) the job’s computation type and (c) the
amount of data to be processed. A Data Transport Element models a data shift over a
network link; therefore, the output data and the input data do not differ in size; the time
consumed by this node is proportional to the link’s bandwidth capacity. Queue Element
nodes model the delay suffered by a sub-job when it waits for an available computing
resource. Queue elements do not alter the size of traversing data.

Node
j

Node
j+1

DataSize
j,j+1

DataSize
j-1,j

DataSize
j,j+1

DataSize
j+1,j+2

β
j

Throughput
j

β
j+1

Throughput
j+1

β=1

Node =  Graph node

=  Queue element

=  Sequence flow

Figure 6. Nodes and queue in the job’s execution path model.

A node has two attributes: the compression factor βapp, used to measure the data
shrink/expansion introduced by a node, and the Throughput, defined as the amount of
data per time unit that the node is capable of processing. The βapp value for the Data
Computing Element is equal to the ratio of the output data to the input data, while for the
Data Transport Elements, it equals 1, as there is no modification of the data size occurring
in a data transfer. The Throughput of a Data Computing Element depends on the Site’s
computing capacity and the job’s computation type, while for the Data Transport Elements,
the Throughput corresponds to the link capacity. Finally, for a Queue Element, the βapp
is set to 1 (no computation occurs); in addition, since the concept of Throughput is not
easily applicable to this node (it would depend on the computing process of other nodes),
we stick to the calculus of the delay introduced by the queue by estimating the residual
computing time of the “competing” nodes (i.e., nodes of other jobs modeling the same
contended computing resource).

In general, a node’s execution time is defined as the ratio of the input data size to the
Throughput of the node. In Figure 6, the label value of the edge connecting node Nodej to
node Nodej+1 is given by:

DataSizej,j+1 = DataSizej−1,j × β j (1)

A generic node Nodej’s execution time is defined as:

Tj =
DataSizej−1,j

Throughputj
(2)

Both the βapp and the Throughput are job’s application specific, i.e., they depend on
the particular job’s algorithm that elaborates the data. Since such values are not available
at job submission time, we need to estimate them. Specifically, before the TJEC is actually
elaborated by the job scheduler, we run the job’s algorithm on small-sized samples of the
overall data that are actually elaborated by the job. The result of the estimate constitutes
what we call the job’s Application Profile. Details on the elaboration of the Application
Profile can be found in our previous work [18], where we studied the Application Profile of
a well-known MapReduce applications.



Big Data Cogn. Comput. 2022, 6, 5 10 of 26

As mentioned before, the execution path model is strongly affected by the computing
context. The number of potential paths generated for a given job strictly depends on: (a) the
capacity of available computing nodes, (b) the network links’ number and capacity and
(c) the data fragmentation scheme. We provide for a split of the data set into equally sized
data blocks, thus favoring the shift of certain data blocks from Site to Site. In Section 4,
we report a study on the estimate of the optimum data block size. On the one hand, data
granularity provides the advantage of producing more flexible data distribution schemes.
As a counter effect, a large number of the data blocks gives birth to a large number of
potential execution paths. Basically, a graph has as many branches as the number of Map
Reduce sub-jobs that are executed. Every branch stems from the root node (initial node) and
ends up at the Global Reducer’s node. A branch’s execution time is the sum of the execution
times of the nodes composing the branch (with the exception of the Global Reducer node,
which is left out of this summation). We outline that executions carried out along branches
are independent of each other; therefore, the branches end up showing different execution
times. The Global Reducer activates only when all branches have output their results.
Therefore, the slowest branch determines when the global reducing is allowed to start.
Finally, the Global Reducer execution time is calculated by the summing up the sizes of
output received by the branches and dividing it by the node’s estimated Throughput.

Let us make a concrete example of an execution path modeling. The scenario we
consider is the one depicted in Figure 4, while we also refer to the submission timing shown
in Figure 5. Furthermore, we assume that data have been ideally fragmented in data blocks
of 5 GB each, and that every job needs to process 15 GB of data. Job1 is requesting to process
data that resides in S1 (a 5 GB data block) and S3 (a 10 GB data block, ideally splits into
two 5 GB data blocks); Job2 is requesting to process data residing in S1 (one data block)
and S5 (two data blocks); Job3 is requesting to process data residing in S2, S4 and S5, each
holding one 5 GB data block. In Figure 7, we depicted the graph model representing two
potential execution paths generated by the job scheduler for Job2 and Job3, respectively.
For the clarity of the picture, we did not depict the Job1. execution path. The plan for Job2
envisions three execution branches:

1. a data block is moved from S1 to S3 through the links L111 and L113; here, sub-job
Job2.1 suffers a delay because the resource S3 is used by sub-job Job1.3 (see Figure 5);
once S3 has been released, Job2.1 gains it and elaborates the data block; the output
of the elaboration is shifted to S1 through the links L113 and L111; here, the global
reduction can take place (note that the global reduction step starts only after all the
data elaborated by the sub-jobs have been gathered in S1.).

2. a data block is shifted from S5 to S4 traversing the links L225 and L224; here, Job2.2
immediately gains the computing resource (S4) and elaborates the data block; the
output of the elaboration is moved to S1 through the links L224, L1122 and L111; here,
the global reduction can take place.

3. Job2.3 accesses and elaborates the data block residing in S5; the output of the elabora-
tion is shifted to S1 through the links L225, L1122 and L111; here, the global reduction
can take place.

Likewise, the J3 plan envisions three branches. In this case, in no branch, a data shift is
necessary. It is worth noting that all sub-jobs suffers a delay, since the requested computing
resources are locked by other running sub-jobs. We remark that the depicted paths are just
potential execution paths devised for J2 and J3. The job scheduler is charged with exploring
all the potential paths of a job and identifying the one providing for the shortest execution
time. For a deeper insight on the search for the optimal execution path, the reader may
refer to [19], where details about the adopted LAHC algorithm can be found.



Big Data Cogn. Comput. 2022, 6, 5 11 of 26

Figure 7. Graph modeling potential execution paths for Job 2 and Job 3.

4. Optimal Data Fragmentation

As mentioned in Section 3.2.1, our approach provides for the split of the entire data set
into multiple, equally sized data blocks, with the objective of shifting data blocks among
Sites. In this section we study the impact of data block size on the performance of the job
and propose a mechanism to estimate the data block size that maximizes that performance.
Of course, the data block size is not an independent variable, and its impact must be
regarded along with that of other variables that characterize the distributed computing
environment, namely the available computing resources and the network links’ capacity.

We recall the intuition on which we grounded our proposal: in the aim of exploiting
at best the distributed computing resources, a Site holding great computing capacity
ought to attract as much data as possible, provided that the network paths traversed by
those data do not penalize too much the gathering of the data at that Site. Moving data
to a Site turns out to be convenient if (a) the Site offers much computing capacity and
(b) the network connecting the data’s initial location and the Site’s location has a large
bandwidth. To measure the fitness of a Site in regard to this purpose, we introduce the
following parameters:

• CPUrate is the Site’s computing power normalized to the overall context’s computing power.
• Connectivity represents the capability of the Site to exchange data with other sites in

the computing context.

The CPUrate of Site Si is given by:

CPUrate(Si) =
CPU(Si)

∑N
j=1 CPU(Sj)

The Connectivity of Site Si is defined as the arithmetic mean of all end-to-end nominal
network bandwidths between the considered Site and the other Sites in the distributed
computing context. It is represented as:

Connectivity(Si) =
∑N

j=1 Bandwidthi,j

N − 1



Big Data Cogn. Comput. 2022, 6, 5 12 of 26

where Bandwidthi,j is the nominal network capacity between node i and node j, and N is
the number of Sites belonging to the distributed context. We also define the Connectivityrate
as the connectivity of a Site normalized to the overall connectivity of the distributed context.
Thus, for Site Si, it is given by:

Connectivityrate(Si) =
Connectivity(Si)

∑N
j=1 Connectivity(Sj)

Now, for each Site, we compute a score as a linear function of both the Connectivityrate
and the CPUrate described above. The score function is given by:

Score(Si) = K× CPUrate(Si) + (1− K)× Connectivityrate(Si)

where k is an arbitrary constant in the range [0, 1]. We ran several tests in order to best
tune the K value. In our scenarios, good results were observed by setting k values close to
0.5, i.e., values that balance the contribution of the network and of the computing power.
Seeking for an optimum k value, though, was out of the scope of this work.

Finally, we define the NominalBlockSize as:

NominalBlockSize = min
∀i

Score(Si)× JobInputSize (3)

where JobInputSize is the total amount of data to be processed by the given Job. The
NominalBlockSize is the data block size found by the described heuristic method. Of course,
there is no guarantee that such a value is the optimum (i.e., the one that maximizes the job
performance), but it is very likely that the optimum value is near the NominalBlockSize.
A procedure is then run to seek the optimum in the proximity of the NominalBlockSize.

Given the NominalBlockSize, we generate a set of values in the range:

[0.5× NominalBlockSize, MinChunkSize]

where MinChunkSize is the minimum size of the data chunks located at the Sites. Regarding
the setting of the lower bound of the mentioned range, we believe 0.5 · NominalBlockSize
is a good compromise to start from when seeking for optimal values that are close to the
Nomi− nalBlockSize and, at the same time, do not produce an excessive data fragmentation,
which in turn would eventually be detrimental to the overall performance. For each data
block size in the range, we compute the best job execution path by feeding the LAHC
scheduling algorithm with the current context, the job information and the selected data
block size [19]. Finally, the data block size producing the minimum job makespan is selected
as the best candidate.

For a better comprehension of the mechanism, we provide the following example. Let
us suppose that the computing context is made up of three Sites (S1, S2 and S3) intercon-
nected through a star network topology, as depicted in Figure 8. In this example, the overall
data to process are 10 GB and initially reside on the following sites: S1 ← 1 GB, S2 ← 3 GB
and S2 ← 6 GB.

The CPUrate, Connectivity and Connectivityrate for Site S1 are, respectively:

CPUrate(S1) =
100

50 + 100 + 150
= 0.33

Connectivity(S1) =
5 + 5

2
= 5

Connectivityrate(S1) =
5

5 + 7.5 + 7.5
= 0.25

By setting K to 0.5, the score of Site S1 is:

Score(S1) = 0.5× CPUrate(S1) + 0.5× Connectivityrate(S1) = 0.33



Big Data Cogn. Comput. 2022, 6, 5 13 of 26

L2 = 10 MB/s 

S2 = 50 GFLOPS  

S1 = 100 GFLOPS

L1 = 5 MB/s 

L3 = 10 MB/s 

S3 = 150 GFLOPS

Figure 8. Example topology with 3 Sites.

Similarly, the Score(S2) and Score(S3) are, respectively, 0.271 and 0.43. The minimum
score is then on Site S2; according to our approach, the selected NominalBlock− Size is:

NominalBlockSize = Score(S2)× JobInputSize

= 0.271× 10 GB = 271 MB

In this case, the optimal size search procedure has to seek for the optimal size in the
range [135 MB, 1 GB], as 1 GB is the size of the smallest among the data chunks (located
at S1).

In order to assess the effectiveness of the discussed exploratory approach, some
experiments were run. Starting from the reference scenario depicted in Figure 9, we
designed some configurations (that are meant to represent different, concrete computing
scenarios) by tuning up the following parameters: the CPU Power of each Site, the network
links’ capacity and the initial distribution of the data among the Sites. The experiments
were performed by simulating the execution of a job that needed to process 10 GB of
data. Specifically, we considered a sample job for which a βapp value of 0.5 was estimated.
The parameter that is put under observation is of course the job makespan. The objective of
the experiment is to prove the capability of the job scheduler to derive the execution path
ensuring the job’s optimum makespan by varying the data block size. Of course, this has to
hold true independently of the distributed computing scenario that is being considered.

We created five configurations, which have been reported in Table 1. Each configura-
tion represents a specific distributed computing context. As the reader may notice, going
from Con f ig1 to Con f ig5, the computing scenarios become more and more unbalanced.

In the tests, for each configuration, the job scheduler was fed with the context data.
According to our mechanism, the optimal data block size is to be sought in the range
[0.5× NominalBlockSize, MinChunkSize]. For the chosen configurations, the calculus in
Formula (3) gave the values reported in Table 2.

The exploration procedure extracts a finite number of points belonging to that range
and that constitute the points to be checked. The points are selected in this way: starting
from the left edge of the range, the next points to be selected are obtained by stepping to
the right by a fixed quantity of 10% of the MinChunkSize. Of course, for a finer search, a
smaller step might be chosen: this would generate a higher number of points, which in turn
would mean a heavier burden to the job scheduler with no guarantee of a consistent benefit.



Big Data Cogn. Comput. 2022, 6, 5 14 of 26

S1

S2

S3 S4

S5

S6

L3 L4

L2

L1 L6

L5

Figure 9. Reference topology.

Table 1. Configurations used for the tests.

Sites [GFLOPS] Links [MB/s]

Config S1 S2 S3 S4 S5 S6 L1 L2 L3 L4 L5 L6

1 50 50 50 50 50 50 10 10 10 10 10 10
2 50 25 50 25 50 25 10 10 10 10 10 10
3 50 50 50 50 50 50 5 10 5 10 5 10
4 25 50 25 50 25 50 10 5 10 5 10 5
5 50 25 50 25 50 25 10 5 10 5 10 5

Table 2. Nominal block Size computed for the five configurations.

Con f ig1 Con f ig2 Con f ig3 Con f ig4 Con f ig5

NominalBlockSize 1.67 GB 1.38 GB 1.52 GB 1.52 GB 1.24 GB

In the first battery of tests, the job’s input data were equally spread so that Sites would
host 1.7 GB data each. Results from tests run on the five configurations are shown in
Figure 10, where the assessed job’s makespan is plotted against the data block size. It is
important to notice that, with the exception of Con f ig1, for all of the configurations the
graph mainly has a parabolic trend with a clearly identified minimum, which is very close
to the NominalBlockSize.

In the second battery of tests, the configurations almost remained the same; the only
modification regarded the initial data placement. In particular, a single Site was chosen to
host the entire 10 GB of data. For the sake of completeness, we repeated the test selecting
every time a different Site to host the data. It was observed that the data’s initial placement
is not a bias to the experiment. In Figure 11, we report the results of the case where the
Site chosen to host the data is S4. This time, the trend is more like a slope, but again the
minimum is localized around the NominalBlockSize.



Big Data Cogn. Comput. 2022, 6, 5 15 of 26

 1300

 1320

 1340

 1360

 1380

 1400

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 1

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config2

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 3

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900
 1950
 2000
 2050

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 4

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 3400

 0.6  0.8  1  1.2  1.4  1.6  1.8

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 5

Figure 10. First battery of tests: results from the scenarios where data are evenly distributed
among Sites.

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0  1  2  3  4  5  6  7  8  9  10

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 1

 3000

 3500

 4000

 4500

 5000

 0  1  2  3  4  5  6  7  8  9  10

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config2

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 0  1  2  3  4  5  6  7  8  9  10

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 3

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 0  1  2  3  4  5  6  7  8  9  10

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 4

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 0  1  2  3  4  5  6  7  8  9  10

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 5

Figure 11. Second battery of tests: results from the scenarios where overall data are initially placed in S4.



Big Data Cogn. Comput. 2022, 6, 5 16 of 26

In the last battery of tests, we split up the job’s input data into two equally sized data
chunks and distributed them among two Sites in the cluster. We repeated the experiment
by taking into account each pair of Sites in the scenario. The choice of the Sites pair was
observed to be irrelevant. In Figure 12, the results obtained by equally distributing data on
S1 and S3 are reported for each of the five configurations. The same consideration made
before on the minimum holds here.

To conclude, the intuition that the optimal data block size depends on the connec-
tivity and on the computing power distribution of the computing context (formalized in
Formula (3)) was proved true. According to this, the procedure of the search for the optimal
data block size has been embedded as a subroutine of the job scheduler to support the
search for the optimal job execution path. Since the optimum data block size was always
found to be close to the NominalBlockSize value, the exploration procedure focuses on a
very limited boundary of that value (3–4 points are checked at most).

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 1

 2400

 2450

 2500

 2550

 2600

 2650

 2700

 2750

 2800

 2850

 2900

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M
a
ke

sp
a
n

 [
se

c]
Data block size [GB]

Config2

 1450
 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900
 1950
 2000

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 3

 1700
 1800
 1900
 2000
 2100
 2200
 2300
 2400
 2500
 2600
 2700
 2800

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 4

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M
a
ke

sp
a
n

 [
se

c]

Data block size [GB]

Config 5

Figure 12. Third battery of tests: results from the scenarios where data are initially placed on Sites S1

and S3.

5. Experiment: H2F vs. Hadoop

In this section, we describe several tests run to estimate how well H2F performs with
respect to a vanilla Hadoop framework. The job’s completion time (makespan) is KPI we
used to make such comparison.

The proof-of-concept was achieved by way of a small-scale test-bed, realized by means
of off-the-shelf PCs and network elements, which reproduces an imbalanced distributed
computing context. The reader can notice that the size of the data involved in the exper-
iment is also scaled to fit the test-bed dimension. The employed test-bed is a controlled
environment which gave us the freedom to access and play with all infrastructural parame-
ters of interest, from the CPU power of a Site to the bandwidth of an inter-Site link. In our
future plans, we will work at the implementation of a large-scale test-bed addressing a real
geographical computing scenario.

The test-bed environment consists of four Sites connected through network links.
Each Site represents a data center, which is equipped with some computing power, stores



Big Data Cogn. Comput. 2022, 6, 5 17 of 26

some raw data and executes an instance of the H2F framework. The network topology of
the test-bed environment is depicted in Figure 13. The configuration of the testbed was
set as follows: two sites (S3, S4) equipped with an i7 CPU architecture and 8 GB RAM,
which provide for an estimated computing node’s capacity of 150 GFLOPS (The computing
capacity was assessed with the Linpack benchmark (http://www.netlib.org/benchmark/hpl/,
accessed on 29 December 2021); two Sites (S1, S2) having a Core 2 Duo CPU and 4GB RAM,
for an estimated computing power of 15 GFLOPS each. Therefore, in terms of computing
power, the test-bed is natively imbalanced. Finally, each network link’s nominal bandwidth
is set to 40 MB/s.

L1 

S1 = 15 GFLOPS  S2 = 15 GFLOPS

L2 

L3 

S4 = 150 GFLOPSS3 = 150 GFLOPS

L4 

Figure 13. Network topology of test-bed environment.

In order to discover how the proposed framework is capable of boosting the perfor-
mance of various kind of Hadoop application, we tested three applications showing very
different application profiles.

In particular, the following applications were used for the mentioned purpose: Word-
Count, InvertedIndex and ArithmeticMean. Those applications represent a (yet non-
exhaustive) set of applications that can be easily MapReduced. WordCount is the most
I/O bound and is very CPU intensive too, while ArithmeticMean is CPU intensive and
does not interact much with I/O. In its turn, InvertedIndex is as CPU intensive as the other
applications but stays in the middle for what concerns interaction I/O. The reader may
refer to our former work [18] for a detailed characterization of these applications in terms
of βapp and Throughput.

Some testing scenarios, reproducing different situations of imbalance, were specifi-
cally designed to analyze the capability of H2F in boosting the performance of Hadoop
in distributed computing contexts where imbalance exists in terms of Sites’ computing
capacity, network links’ bandwidth and raw data distribution, respectively. The scenarios
were generated by tuning up the initial distribution of the raw data among the sites and
the capacity of the network links interconnecting the sites.

The first scenario focuses on data distribution. The size of raw data considered in this
scenario is 5 GB. The configurations used for this test are reported in Table 3. For each
configuration, the displayed values represent the rate of the overall input data residing in
each Site. For instance, in Con f ig1, 40% of the data resides in S1, 30% in S2, 20% in S3 and
10% in S4.

Table 3. Configurations of the data blocks’ distribution.

S1 S2 S3 S4

Con f ig1 40% 30% 20% 10%
Con f ig2 40% 40% 20% 0%
Con f ig3 30% 0% 70% 0%

http://www.netlib.org/benchmark/hpl/


Big Data Cogn. Comput. 2022, 6, 5 18 of 26

Results of the tests run to compare the performance of H2F and the Hadoop on the
three applications are reported in Figure 14.

 0

 100

 200

 300

 400

 500

 600

 700

 800

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(b)

 0

 100

 200

 300

 400

 500

 600

 700

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(c)

Figure 14. H2F vs. Hadoop: comparison of job’s execution time for (a) Con f ig1, (b) Con f ig2 and
(c) Con f ig3 in the 5 GB raw data scenario.

The depicted results are averaged through 10 runs per configuration. All values
include the overhead time, which is the time spent to prepare the data for the processing.
In the case of the H2F, the overhead is composed of: the time for the Job scheduler to devise
the optimal execution path and the optimal data block size; (optionally) the time to shift
data among Sites; the time taken by the selected Site to store the received data in the local
HDFS; the waiting of the Global Reducer. In the case of vanilla Hadoop, the overhead is
just the time to store the data in the HDFS. In regards to the H2F, the job scheduling time
never exceeded a hundred seconds. Of course, that time may increase in the case of more
complex network topologies and larger amounts of raw data.

Taking a look at Figure 14, we may notice that, regardless of the initial distribution
of data, the H2F framework executes the WordCount application quicker than Hadoop.
As for the other two applications, the performances are comparable in the case of Con f ig1
and Con f ig2, with a little advantage for H2F. In Con f ig3, vanilla Hadoop slightly prevails.
Let us make a few considerations on the obtained results. First, the use of the H2F in this
specific scenario for applications having a profile that is similar to that of InvertedIndex and
ArithmeticMean seems to not be effective; indeed, it might actually lead to a performance
degradation. The bad performance of the H2F is due to the relatively small amount of data
(5 GB), because of which the overhead time heavily impacts the H2F performance (at least,
in a heavier way than in the case of the vanilla Hadoop framework). Second, in the case of
Wordcount, the CPU-intensive nature of the application makes the H2F outperform the
vanilla Hadoop, despite the former suffering from a longer overhead time. This proves that
for more CPU intensive application, the H2F can deliver a better performance.



Big Data Cogn. Comput. 2022, 6, 5 19 of 26

In the second scenario, we considered an overall data size of 50 GB, while keeping
unchanged the rest of configurations. Results of the tests are depicted in Figure 15. With
the increase in data size, H2F exhibits a better performance for all applications. The perfor-
mance improvement over the vanilla Hadoop is more evident than the 5 GB case (15–20%
on average). On a larger data set, the H2F is capable of detecting the computation resources
that likely speed up the computing process (as they exhibit a larger computing capacity).
In addition, with the job makespan being longer than in the 5 GB case, we observed a
proportionally much lower impact of the overhead.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(c)

Figure 15. H2F vs. Hadoop: comparison of job’s execution time for (a) Con f ig1, (b) Con f ig2 and
(c) Con f ig3 in the 50 GB raw data scenario.

We designed one last scenario where the network links’ capacity is imbalanced with
the purpose of showing that the H2F can also adapt to such an imbalance. In Table 4, we
report two links’ bandwidth configurations used in the tests. The remaining parameters
are left unchanged (50 GB data, input data distributed among Sites as defined in Con f ig1).

Table 4. Links’ Configurations.

L1 [MB/s] L2 [MB/s] L3 [MB/s] L4 [MB/s]

Con f ig4 20 20 40 40
Con f ig5 20 40 20 40

In Figure 16, we reported the results of the tests for the imbalanced links scenario. Once
again, the makespan observed for the H2F is shorter than the vanilla Hadoop’s, proving
that the H2F framework can also deal very well with imbalanced network configurations.



Big Data Cogn. Comput. 2022, 6, 5 20 of 26

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

WordCount InvertedIndex Mean

E
xe

cu
ti

o
n
 T

im
e
 [

se
c]

Job

Plain Hadoop Time
H2F Time

(b)

Figure 16. H2F vs. Hadoop: comparison of job’s execution time for (a) Con f ig4 and (b) Con f ig5.

Concluding Remarks on Performance Results

The aim of all the tests was to assess the capability of the H2F to adapt to different
distributed computing environments, and to also show under what conditions it may
provide better performance than the vanilla Hadoop framework.

The first achieved result concerns the application profile: we found out that H2F
provides better performance for CPU intensive and I/O bound applications, which in our
tests are represented by the WordCount application). This holds true for different schemes
of data distribution among Sites and network links bandwidth.

The second result relates to the overhead introduced by the H2F framework: for
relatively small amounts of data (5 GB, in our small-scale testbed), the overhead of H2F
strategy may negatively impact performance results with respect to a vanilla Hadoop
framework. However this occurs only on a specific kind of application profiles, and,
in general, it is not a big issue since H2F is purposefully designed to work with and in Big
Data environments.

The final consideration concerns network imbalance: though it has been tested in a
small testbed, the H2F has proven capable to deal with different network links properties,
as it managed to take into account network parameters both for data distribution and job
scheduling purposes.

6. Literature Review

Processing Big Data in a geographical context is a hot topic which has been addressed
in the literature with several approaches.

Authors of [20] discuss a joint task scheduling and routing framework for geo-
distributed cloud frameworks. They propose a model to represent task-data dependencies
and data-center dependencies as an augmented hyper-graph and propose many techniques
to partition the hyper-graph in ways that minimize the data transfer volume. In [21],
a strategy to place the data and job in Alibaba’s geo-distributed DCs is proposed with the
only objective of minimizing inter-DC bandwidth usage. Putting the focus on a multi-cloud
environment, [22] proposes a cost-aware task placement strategy that takes into account
data transfer cost, network bandwidth, input data size and locations.

None of the mentioned works leverage MapReduce-based strategies to boost the task
performance; therefore, it was not easy to make a fair comparison with them. In light
of this, we decided to survey the literature in search of works that, similarly to ours,
address the problem of using the MapReduce paradigm to improve the job makespan
in geographical Big Data contexts. In that regard, researchers have been following two
main approaches: (a) increasing the awareness of the heterogeneity of computing nodes
and network links in improved versions of Hadoop (Geo-Hadoop approach); (b) adopting
hierarchical frameworks where a single MapReduce job is split into many sub-jobs that are
firstly sent to several nodes where they are elaborated as plain Hadoop jobs and whose
results are then sent back to a coordinator who merges them (Hierarchical approach). The
former approach’s strategy is to optimize Hadoop native flow. The latter’s is to make a



Big Data Cogn. Comput. 2022, 6, 5 21 of 26

smart decomposition of the job into multiple sub-jobs and then exploit the native potential
of plain Hadoop.

In the following subsection, we revise some relevant works from both approaches.

6.1. Geo-Hadoop Approach

Geo-Hadoop reconsiders the four steps of the job’s execution flow (Push, Map, Shuffle,
Reduce) in a panorama where data are not available at a cluster but are, instead, spread over
multiple and often geographically distant sites, and the available resources (compute nodes
and network bandwidth) are imbalanced. To reduce the overall job’s average makespan,
the single four steps must be differently coordinated. Some have proposed modified
versions of Hadoop capable of enhancing only a single step [23,24]. In [7], the dynamics of
the steps are analyzed, and a comprehensive end-to-end optimization of the job’s execution
flow is proposed. An analytical model is presented which considers parameters such as
the network links, the nodes computing capacity and the applications profile and converts
the makespan optimization into a linear programming problem. Zhang et al. [10] propose
a modified version of the Hadoop algorithm that improves the job performance in a
cloud-based multi-data center scenario. The whole MapReduce flow has been enhanced,
including a prediction of the localization of MapReduce jobs and a pre-fetch of the data
allocated as input to the Map phases. Both the job and task scheduler, as well as the
HDFS’ data placement policy, have been affected by changes of this work. In [25], an
HDFS layer extension that leverages the spatial features of the data and co-locates them
on the HDFS nodes that span multiple data centers is presented. Meta-MapReduce is
presented in [26], an approach that claims to reduce the communication cost significantly.
It exploits the locality of data, and Mappers/Reducers are exploited in such a way as
to avoid the movement of data not involved in the final output. The basic idea of the
approach is to compute output using metadata which are much smaller than the original
data. However, in this case, the work has not expressly designed for the geo-distributed
data. In [27], the authors extend the Hadoop framework to use it on the Open Science Grid
(OSG) infrastructure. Although the environment is inherently geographically distributed,
the main problem addressed by the work is related to the fault tolerance, due to the fact
that nodes belonging to the OSG can be preempted at any time. Thus, the HOG’s data
placement and replication policy takes the site failure into account when deciding where
to place data blocks. G-Hadoop, a MapReduce framework that aims to enable large-scale
distributed computing across multiple High End Computing (HEC) clusters, is presented
in [28]. The main innovative ideas of this work lie in the introduction of a distributed file
system manager (Gfarm) to replace the original HDFS and the employment of multiple
task trackers. Eventually, as shown by comparative experiment, there is no clear evidence
that G-Hadoop outperforms the vanilla Hadoop in terms of job’s makespan. The main
benefits are confined to the bandwidth usage, for which G-Hadoop shows a better data
traffic management.

Several other works try to improve the performance of MapReduce by modifying the
job scheduler. A Load-Aware scheduler is proposed in [29] that allows one to improve
resource usage in a heterogeneous MapReduce cluster with a dynamic Workload. The
Load-Aware scheduler is composed by two modules: (1) a “data collection module” that
records system-level information from all cluster nodes; (2) a “task scheduling module” that
estimates the task’s completion time. In [30], the focus is on minimizing inter-data center
traffic of a cross-data centre MapReduce. The authors formulate an optimization problem
that jointly optimizes input data fetching and task placement and that is also based on
historical statistics for a given job. In [31], the authors propose a self-tuning task scheduler
that adopts a genetic algorithm approach to search the optimal task-level configurations
based on the feedback reported by a task analyzer.

We also considered works in the literature not focusing on MapReduce, although fo-
cusing on similar scenarios. To optimize the makespan of a job in a geo-distributed system
in [32] a data-replication-aware scheduling algorithm is proposed. The approach is based



Big Data Cogn. Comput. 2022, 6, 5 22 of 26

on a global scheduler that maintains a local queue for all submitted jobs. A given task
can only be scheduled on a node which already has its required data, thus not involving
data transfers. The authors in [33] leverage on optimal data allocation to improve the
performance of data-intensive applications. Specifically, it addresses the balanced data
placement problem for geographically distributed contexts, with joint considerations of the
localized data serving and the co-location of associated data.

6.2. Hierarchical Approach

As already discussed in Section 3.1, Hierarchical approaches are mainly based on
two computing levels: a bottom level, where plain Hadoop is run on local data, and
a top level, where a centralized coordination entity is in charge of splitting the global
workload into many sub-jobs and of gathering the sub-jobs’ output. In this case, the critical
aspect to be addresed are related to how to redistribute data among the available clusters
in order to optimize the job’s overall makespan. An example of an earlier hierarchical
MapReduce architecture is introduced in [11], where the authors propose a load-balancing
algorithm that distributes the workload across multiple data centers. A scenario where
multiple MapReduce operations on the same data need to be performed is analyzed in [12].
To identify the optimized schedules for job sequences, a data transformation graph is
used to represent all the possible jobs’ execution paths: then, the well-known Dijkstra’s
shortest path algorithm is used to determine the optimized schedule. An extra MapReduce
phase named “merge” is introduced in [13]. It is executed after map and reduce phases
and extends the MapReduce model for heterogeneous data. This approach is useful in
the specific context of relational database, as it is capable of expressing relational algebra
operators as well as implementing several join algorithms.

6.3. Comparative Analysis

A comprehensive yet thorough analysis of the literature works that address the prob-
lem of running parallel computation over delocalized data can be found in [34]. A more
recent survey of geo-distributed big-data analytics frameworks that explicitly take into
account network bandwidth in their formulation appeared in [35]. Unfortunately, a quan-
titative comparison of all these works is not possible. Basically, they do not address the
same computing context; therefore, there is no common scenario on which a compar-
ison can be run; further, none of the authors have ever publicly released the software
prototype/simulator used to carry out their own experiments.

The comparative analysis presented here, thus, focuses on qualitative aspects. In Table 5,
we report a list of the main aspects taken into account by the literature works that have
proposed computing strategies for geographically distributed Big Data:

• Context of the computing scenario. The context encompasses elements such as (a) the
number and the capability of the available computing nodes, (b) the topology of the
network interconnecting the computing nodes as well as the bandwidth available
at each network link, and (c) the amount of data residing at each node involved in
the computation.

• Job scheduling objective. The objective of the scheduling algorithm (optimization of
cost, execution time, etc.).

• Application profiling. Each job encapsulates a specific application that elaborates data
according to a given algorithm. The application profile is the “fingerprint” of the ap-
plication that captures the way the application behaves in terms of data manipulation.

• Compatibility with MapReduce frameworks. This refers to the possibility of reusing
existing software frameworks specifically designed for clusters of close nodes.

• Data fragmentation. It refers to the opportunity of the fragmenting data of a data
center into smaller pieces (blocks) and migrating groups of them to other data centers.



Big Data Cogn. Comput. 2022, 6, 5 23 of 26

Table 5. Literature review: a comparative analysis.

Computing Context Job Scheduling Objective Application Profiling Developed Software Compatibility with MapReduce Frameworks Data Fragmentation

Kim et al. [23] CPU Makespan - Hadoop Extension - -

Wang et al. [28] - Makespan, Network usage - Hadoop Extension - -

Mattess et al. [24] - Monetary cost - Hadoop Extension - -

Heinz et al. [7] - Map execution time Map phase Hadoop Extension - -

Zhang et al. [10] - Makespan - Hadoop Extension - -

Fahmy et al. [25] - Makespan, Network usage - HDFS Extension Hadoop 0.20 -

You et al. [29] CPU Makespan - Hadoop Extension - -

Cheng et al. [31] CPU Makespan - Hadoop Extension - -

Li et al. [30] Network, Data Makespan - Hadoop Extension - -

Convolbo et al. [32] Data Makespan - Hadoop Extension - -

Yu et al. [33] Data Makespan - Simulator - -

Luo et al. [11] CPU, Data Makespan - Hadoop Extension - -

Jayalath et al. [12] Network, Data Makespan, Monetary cost - Software prototype Hadoop Yes

Yang et al. [13] Data Makespan - Software prototype - -

H2F CPU, Network, Data Makespan MapReduce Software prototype Hadoop (any version) Yes



Big Data Cogn. Comput. 2022, 6, 5 24 of 26

Though most of the works have taken the computing context in some consideration,
only the H2F claims the importance of considering the joint impact of the three aspects:
computing resources, network topology/links and data distribution. Among the revised
works, only one [7] has considered the opportunity of profiling the application and feeding
the job scheduler with the derived profile. Unlike [7], which focuses just on the Map
part of the application, our profiling mechanism addresses the MapReduce application’s
algorithm as a whole. The main distinctive feature of the solution we propose is the
capability of smartly fragmenting and distributing data before the actual computation
begins. Jayalath et al. [12] also introduce data fragmentation in their work, but H2F is
capable of dealing with data granularity in a much more flexible way: the experiments
discussed before have demonstrated that a good guess on the right level of data granularity
may positively impact the job’s overall performance. Finally, the H2F software prototype is
compatible with any of the available Hadoop frameworks and the like. In fact, the job’s
scheduler business logic is fully independent of the specific parallel processing framework
running at each Site involved in the distributed computation.

7. Conclusions and Final Remarks

The gradual increase in the amount of information produced daily by devices con-
nected to the Internet, combined with the huge volume of data residing in traditional
databases, has led to the definition of the Big Data concept. MapReduce is probably the
most famous paradigm widely used in both academic and commercial contexts to run
parallel computation on Big Data. However, when it comes to computing data natively scat-
tered over multiple and heterogeneous computing resources, MapReduce fails to guarantee
acceptable performance.

This paper discusses a proposal of a hierarchical computing framework that leverages
a novel data fragmentation technique to improve the performance of parallel computation
in geographically distributed contexts.

More specifically, we developed a context-aware scheduler that explores a significant
spectrum of job schedules (execution paths) and comes up with a sub-optimal, yet very
efficient solution. In the study presented in this paper, the scheduler seeks for the sub-
optimal data block size by exploring a sub-set of viable data block size values. If on the one
hand data fragmentation adds further complexity to scheduling process, on the other hand
the fragmentation increases the chance of parallelizing the tasks of a given Job. Taking a
close look at the results, it can be noticed that with larger block sizes longer job completion,
times are observed. We remark that the data fragmentation and distribution scheme
produced by the scheduler is always the result of a compromise between the opportunity of
exploiting the most powerful computing resources and the constraint imposed by the worst-
performing network links. The study proved that, in imbalanced computing environments,
an accurate plan of data fragmentation and redistribution among the involved computing
resources improves the performance of MapReduce jobs.

In the future, we will work on the design and implementation of a new component
responsible for the management of the data replicas that circulate in the distributed com-
puting scenario. By tracing the movement and the position of data and their replicas, we
are confident that more performing job schedules may be devised. Furthermore, we plan
to run experiments on a geographically scaled testbed. In particular, we are tackling the
design of a controlled distributed environment built upon several proprietary infrastruc-
tures (computing resources, networking elements and geographic links) offered by public
Cloud providers.

Author Contributions: Conceptualization, methodology and software, G.D.M. and O.T.; writing—
review and editing, G.D.M. and O.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Big Data Cogn. Comput. 2022, 6, 5 25 of 26

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and Challenges of Big Data Research. Big Data Res. 2015, 2, 59–64. [CrossRef]
2. Kambatla, K.; Kollias, G.; Kumar, V.; Grama, A. Trends in big data analytics. J. Parallel Distrib. Comput. 2014, 74, 2561–2573.

[CrossRef]
3. Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and

open research issues. Inf. Syst. 2015, 47, 98–115. [CrossRef]
4. Pääkkönen, P.; Pakkala, D. Reference Architecture and Classification of Technologies, Products and Services for Big Data Systems.

Big Data Res. 2015, 2, 166–186. [CrossRef]
5. Hilty, L.M.; Aebischer, B. ICT for Sustainability: An Emerging Research Field. In ICT Innovations for Sustainability; Springer

International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 3–36. [CrossRef]
6. Cardosa, M.; Wang, C.; Nangia, A.; Chandra, A.; Weissman, J. Exploring MapReduce Efficiency with Highly-Distributed Data.

In Proceedings of the Second International Workshop on MapReduce and Its Applications, San Jose, CA, USA, 8 June 2011;
Association for Computing Machinery: New York, NY, USA, 2011; pp. 27–34. [CrossRef]

7. Heintz, B.; Chandra, A.; Sitaraman, R.; Weissman, J. End-to-end Optimization for Geo-Distributed MapReduce. IEEE Trans. Cloud
Comput. 2016, 4, 293–306. [CrossRef]

8. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design and Implementation, USENIX Association, OSDI’04, San Francisco, CA, USA, 6–8
December 2004.

9. The Apache Software Foundation. The Apache Hadoop Project. 2011. Available online: hadoop.apache.org (accessed on 29
December 2021).

10. Zhang, Q.; Liu, L.; Lee, K.; Zhou, Y.; Singh, A.; Mandagere, N.; Gopisetty, S.; Alatorre, G. Improving Hadoop Service Provisioning
in a Geographically Distributed Cloud. In Proceedings of the 2014 IEEE 7th International Conference on Cloud Computing
(CLOUD’14), Anchorage, AK, USA, 27 June–2 July 2014; pp. 432–439. [CrossRef]

11. Luo, Y.; Guo, Z.; Sun, Y.; Plale, B.; Qiu, J.; Li, W.W. A Hierarchical Framework for Cross-domain MapReduce Execution.
In Proceedings of the Second International Workshop on Emerging Computational Methods for the Life Sciences (ECMLS ’11),
Trento, Italy, 29 September–1 October 2011; pp. 15–22. [CrossRef]

12. Jayalath, C.; Stephen, J.; Eugster, P. From the Cloud to the Atmosphere: Running MapReduce across Data Centers. IEEE Trans.
Comput. 2014, 63, 74–87. [CrossRef]

13. Yang, H.; Dasdan, A.; Hsiao, R.; Parker, D.S. Map-reduce-merge: Simplified Relational Data Processing on Large Clusters. In
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data (SIGMOD’07), Beijing, China, 11–14
June 2017; pp. 1029–1040. [CrossRef]

14. Cavallo, M.; Di Modica, G.; Polito, C.; Tomarchio, O. H2F: A Hierarchical Hadoop Framework for big data processing in geo-
distributed environments. In Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications
and Technologies (BDCAT 2016), Shanghai, China, 6–9 December 2016; pp. 27–35. [CrossRef]

15. Cavallo, M.; Di Modica, G.; Polito, C.; Tomarchio, O. Fragmenting Big Data to boost the performance of MapReduce in
geographical computing contexts. In Proceedings of the 3rd International Conference on Big Data Innovations and Applications
(Innovate-Data 2017), Prague, Czech Republic, 21–23 August 2017; pp. 17–24. [CrossRef]

16. Facebook. Project PRISM. 2012. Available online: www.wired.com/2012/08/facebook-prism (accessed on 29 December 2021).
17. Dastjerdi, A.V.; Gupta, H.; Calheiros, R.N.; Ghosh, S.K.; Buyya, R. Fog Computing: Principles, architectures, and applications.

In Internet of Things: Principles and Paradigms; Morgan Kaufmann: Burlington, MA, USA, 2016; pp. 61–75. [CrossRef]
18. Cavallo, M.; Di Modica, G.; Polito, C.; Tomarchio, O. Application Profiling in Hierarchical Hadoop for Geo-distributed Computing

Environments. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC 2016), Messina, Italy, 27–30
June 2016; pp. 555–560. [CrossRef]

19. Cavallo, M.; Di Modica, G.; Polito, C.; Tomarchio, O. A LAHC-based Job Scheduling Strategy to Improve Big Data Processing
in Geo-distributed Contexts. In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security
(IoTBDS 2017), Porto, Portugal, 24–26 April 2017; pp. 92–101. [CrossRef]

20. Zhao, L.; Yang, Y.; Munir, A.; Liu, A.X.; Li, Y.; Qu, W. Optimizing Geo-Distributed Data Analytics with Coordinated Task
Scheduling and Routing. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 279–293. [CrossRef]

21. Huang, Y.; Shi, Y.; Zhong, Z.; Feng, Y.; Cheng, J.; Li, J.; Fan, H.; Li, C.; Guan, T.; Zhou, J. Yugong: Geo-Distributed Data and Job
Placement at Scale. Proc. VLDB Endow. 2019, 12, 2155–2169. [CrossRef]

22. Oh, K.; Chandra, A.; Weissman, J. A Network Cost-aware Geo-distributed Data Analytics System. In Proceedings of the 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID 2020), Melbourne, Australia, 11–14
May 2020; pp. 649–658. [CrossRef]

23. Kim, S.; Won, J.; Han, H.; Eom, H.; Yeom, H.Y. Improving Hadoop Performance in Intercloud Environments. SIGMETRICS
Perform. Eval. Rev. 2011, 39, 107–109. [CrossRef]

http://doi.org/10.1016/j.bdr.2015.01.006
http://dx.doi.org/10.1016/j.jpdc.2014.01.003
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1016/j.bdr.2015.01.001
http://dx.doi.org/10.1007/978-3-319-09228-7_1
http://dx.doi.org/10.1145/1996092.1996100
http://dx.doi.org/10.1109/TCC.2014.2355225
hadoop.apache.org
http://dx.doi.org/10.1109/CLOUD.2014.65
http://dx.doi.org/10.1145/1996023.1996026
http://dx.doi.org/10.1109/TC.2013.121
http://dx.doi.org/10.1145/1247480.1247602
http://dx.doi.org/10.1145/3006299.3006320
http://dx.doi.org/10.1109/Innovate-Data.2017.12
www.wired.com/2012/08/facebook-prism
http://dx.doi.org/10.1016/B978-0-12-805395-9.00004-6
http://dx.doi.org/10.1109/ISCC.2016.7543796
http://dx.doi.org/10.5220/0006307100920101
http://dx.doi.org/10.1109/TPDS.2019.2938164
http://dx.doi.org/10.14778/3352063.3352132
http://dx.doi.org/10.1109/CCGrid49817.2020.00-28
http://dx.doi.org/10.1145/2160803.2160873


Big Data Cogn. Comput. 2022, 6, 5 26 of 26

24. Mattess, M.; Calheiros, R.N.; Buyya, R. Scaling MapReduce Applications Across Hybrid Clouds to Meet Soft Deadlines.
In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA’13),
Barcelona, Spain, 25–28 March 2013; pp. 629–636. [CrossRef]

25. Fahmy, M.M.; Elghandour, I.; Nagi, M. CoS-HDFS: Co-locating Geo-distributed Spatial Data in Hadoop Distributed File System.
In Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT
2016), Shanghai, China, 6–9 December 2016; pp. 123–132. [CrossRef]

26. Afrati, F.; Dolev, S.; Sharma, S.; Ullman, J. Meta-MapReduce: A Technique for Reducing Communication in MapReduce
Computations. In Proceedings of the 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(Springer-SSS), Edmonton, AB, Canada, 18–21 August 2015.

27. He, C.; Weitzel, D.; Swanson, D.; Lu, Y. HOG: Distributed Hadoop MapReduce on the Grid. In Proceedings of the 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, USA, 10–16 November 2012;
pp. 1276–1283. [CrossRef]

28. Wang, L.; Tao, J.; Ranjan, R.; Marten, H.; Streit, A.; Chen, J.; Chen, D. G-Hadoop: MapReduce across distributed data centers for
data-intensive computing. Future Gener. Comput. Syst. 2013, 29, 739–750. [CrossRef]

29. You, H.H.; Yang, C.C.; Huang, J.L. A Load-aware Scheduler for MapReduce Framework in Heterogeneous Cloud Environments.
In Proceedings of the 2011 ACM Symposium on Applied Computing (SAC 2011), TaiChung, Taiwan, 21–24 March 2011;
pp. 127–132. [CrossRef]

30. Li, P.; Guo, S.; Miyazaki, T.; Liao, X.; Jin, H.; Zomaya, A.Y.; Wang, K. Traffic-Aware Geo-Distributed Big Data Analytics with
Predictable Job Completion Time. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 1785–1796. [CrossRef]

31. Cheng, D.; Rao, J.; Guo, Y.; Jiang, C.; Zhou, X. Improving Performance of Heterogeneous MapReduce Clusters with Adaptive
Task Tuning. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 774–786. [CrossRef]

32. Convolbo, M.W.; Chou, J.; Lu, S.; Chung, Y.C. DRASH: A Data Replication-Aware Scheduler in Geo-Distributed Data Centers.
In Proceedings of the 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Luxembourg,
12–15 December 2016; pp. 302–309. [CrossRef]

33. Yu, B.; Pan, J. Location-aware associated data placement for geo-distributed data-intensive applications. In Proceedings of
the 2015 IEEE Conference on Computer Communications (INFOCOM 2015), Kowloon, Hong Kong, 26 April–1 May 2015;
pp. 603–611. [CrossRef]

34. Dolev, S.; Florissi, P.; Gudes, E.; Sharma, S.; Singer, I. A Survey on Geographically Distributed Big-Data Processing using
MapReduce. IEEE Trans. Big Data 2019, 5, 60–80. [CrossRef]

35. Bergui, M.; Najah, S.; Nikolov, N.S. A survey on bandwidth-aware geo-distributed frameworks for big-data analytics. J. Big Data
2021, 8, 1–26. [CrossRef]

http://dx.doi.org/10.1109/AINA.2013.51
http://dx.doi.org/10.1145/3006299.3006314
http://dx.doi.org/10.1109/SC.Companion.2012.154
http://dx.doi.org/10.1016/j.future.2012.09.001
http://dx.doi.org/10.1145/1982185.1982218
http://dx.doi.org/10.1109/TPDS.2016.2626285
http://dx.doi.org/10.1109/TPDS.2016.2594765
http://dx.doi.org/10.1109/CloudCom.2016.0056
http://dx.doi.org/10.1109/INFOCOM.2015.7218428
http://dx.doi.org/10.1109/TBDATA.2017.2723473
http://dx.doi.org/10.1186/s40537-021-00427-9

	Introduction
	Background and Motivating Scenario
	Hierarchical Hadoop Framework Design
	System Architecture
	Jobs Scheduling
	Modeling Job's Execution Paths


	Optimal Data Fragmentation
	Experiment: H2F vs. Hadoop
	Literature Review
	Geo-Hadoop Approach
	Hierarchical Approach
	Comparative Analysis

	Conclusions and Final Remarks
	References

