Multidrug resistance (MDR) represents a serious global threat due to the rapid global spread and limited antimicrobial options for treatment of difficult-to-treat (DTR) infections sustained by MDR pathogens. Recently, novel β-lactams/β-lactamase inhibitor combinations (βL-βLICs) have been developed for the treatment of DTR infections due to MDR Gram-negative pathogens. Although novel βL-βLICs exhibited promising in vitro and in vivo activities against MDR pathogens, emerging resistances to these novel molecules have recently been reported. Resistance to novel βL-βLICs is due to several mechanisms including porin deficiencies, increasing carbapenemase expression and/or enzyme mutations. In this review, we summarized the main mechanisms related to the resistance to ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam in MDR Gram-negative micro-organisms. We focused on antimicrobial activities and resistance traits with particular regard to molecular mechanisms related to resistance to novel βL-βLICs. Lastly, we described and discussed the main detection methods for antimicrobial susceptibility testing of such molecules. With increasing reports of resistance to novel βL-βLICs, continuous attention should be maintained on the monitoring of the phenotypic traits of MDR pathogens, into the characterization of related mechanisms, and on the emergence of cross-resistance to these novel antimicrobials.
Paolo Gaibani, T.G. (2022). Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. ANTIBIOTICS, 11(5), 1-20 [10.3390/antibiotics11050628].
Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing
Paolo Gaibani
Primo
;Federica Bovo;Donatella Lombardo;Tiziana Lazzarotto;Simone AmbrettiUltimo
2022
Abstract
Multidrug resistance (MDR) represents a serious global threat due to the rapid global spread and limited antimicrobial options for treatment of difficult-to-treat (DTR) infections sustained by MDR pathogens. Recently, novel β-lactams/β-lactamase inhibitor combinations (βL-βLICs) have been developed for the treatment of DTR infections due to MDR Gram-negative pathogens. Although novel βL-βLICs exhibited promising in vitro and in vivo activities against MDR pathogens, emerging resistances to these novel molecules have recently been reported. Resistance to novel βL-βLICs is due to several mechanisms including porin deficiencies, increasing carbapenemase expression and/or enzyme mutations. In this review, we summarized the main mechanisms related to the resistance to ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam in MDR Gram-negative micro-organisms. We focused on antimicrobial activities and resistance traits with particular regard to molecular mechanisms related to resistance to novel βL-βLICs. Lastly, we described and discussed the main detection methods for antimicrobial susceptibility testing of such molecules. With increasing reports of resistance to novel βL-βLICs, continuous attention should be maintained on the monitoring of the phenotypic traits of MDR pathogens, into the characterization of related mechanisms, and on the emergence of cross-resistance to these novel antimicrobials.File | Dimensione | Formato | |
---|---|---|---|
2022 Gaibani antibiotics-11-00628.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
386.19 kB
Formato
Adobe PDF
|
386.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.