Brain-machine interfaces (BMIs) are promising for motor rehabilitation and mobility augmentation. High-accuracy and low-power algorithms are required to achieve implantable BMI systems. In this paper, we propose a novel spiking neural network (SNN) decoder for implantable BMI regression tasks. The SNN is trained with enhanced spatio-temporal backpropagation to fully leverage its ability in handling temporal problems. The proposed SNN decoder achieves the same level of correlation coefficient as the state-of-the-art ANN decoder in offline finger velocity decoding tasks, while it requires only 6.8% of the computation operations and 9.4% of the memory access.

Liao, J.W., Widmer, L., Wang, X.Y., Di Mauro, A., Nason-Tomaszewski, S.R., Chestek, C.A., et al. (2022). An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding for Implantable Brain-Machine Interface. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/AICAS54282.2022.9869846].

An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding for Implantable Brain-Machine Interface

Benini, L;
2022

Abstract

Brain-machine interfaces (BMIs) are promising for motor rehabilitation and mobility augmentation. High-accuracy and low-power algorithms are required to achieve implantable BMI systems. In this paper, we propose a novel spiking neural network (SNN) decoder for implantable BMI regression tasks. The SNN is trained with enhanced spatio-temporal backpropagation to fully leverage its ability in handling temporal problems. The proposed SNN decoder achieves the same level of correlation coefficient as the state-of-the-art ANN decoder in offline finger velocity decoding tasks, while it requires only 6.8% of the computation operations and 9.4% of the memory access.
2022
2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS)
134
137
Liao, J.W., Widmer, L., Wang, X.Y., Di Mauro, A., Nason-Tomaszewski, S.R., Chestek, C.A., et al. (2022). An Energy-Efficient Spiking Neural Network for Finger Velocity Decoding for Implantable Brain-Machine Interface. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/AICAS54282.2022.9869846].
Liao, JW; Widmer, L; Wang, XY; Di Mauro, A; Nason-Tomaszewski, SR; Chestek, CA; Benini, L; Jang, T
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905815
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact