Tiny Machine Learning (TinyML) applications impose mu J/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 mu J/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.

Scherer, M., Di Mauro, A., Rutishauser, G., Fischer, T., Benini, L. (2022). A 1036 TOp/s/W, 12.2 mW, 2.72 mu J/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/COOLCHIPS54332.2022.9772668].

A 1036 TOp/s/W, 12.2 mW, 2.72 mu J/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications

Scherer, M;Benini, L
2022

Abstract

Tiny Machine Learning (TinyML) applications impose mu J/Inference constraints, with maximum power consumption of a few tens of mW. It is extremely challenging to meet these requirement at a reasonable accuracy level. In this work, we address this challenge with a flexible, fully digital Ternary Neural Network (TNN) accelerator in a RISC-V-based SoC. The design achieves 2.72 mu J/Inference, 12.2 mW, 3200 Inferences/sec at 0.5 V for a non-trivial 9-layer, 96 channels-per-layer network with CIFAR-10 accuracy of 86 %. The peak energy efficiency is 1036 TOp/s/W, outperforming the state-of-the-art in silicon-proven TinyML accelerators by 1.67x.
2022
2022 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS)
1
3
Scherer, M., Di Mauro, A., Rutishauser, G., Fischer, T., Benini, L. (2022). A 1036 TOp/s/W, 12.2 mW, 2.72 mu J/Inference All Digital TNN Accelerator in 22 nm FDX Technology for TinyML Applications. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/COOLCHIPS54332.2022.9772668].
Scherer, M; Di Mauro, A; Rutishauser, G; Fischer, T; Benini, L
File in questo prodotto:
File Dimensione Formato  
1036 top post print.pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 7.87 MB
Formato Adobe PDF
7.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact