Lewy-body pathology with aggregation of abnormal conformations of the protein alpha-synuclein (α-Syn) represent the histopathological hallmarks of Parkinson’s disease (PD). Genetic prototypes such as PD due to mutations in the alpha-synuclein gene (SNCA) offer the opportunity to evaluate α-Syn-related profiles in patient-derived biomaterial. We identified a family with a SNCA triplication and assessed the index patient for CSF α-Syn seeding capacity and levels of total α-Syn along with other neurodegenerative CSF markers (Aβ1-42, total-Tau, phospho-Tau, NFL). As no published CSF data in patients with SNCA triplication are available, we descriptively compared his CSF profiles to those of sporadic PD patients and PD patients with GBA mutations as these are also specifically associated with prominent α-Syn pathology. Additionally, skin biopsies with staining for phospho-α-Syn were done. To assess cerebral glucose metabolism and brain atrophy combined positron emission tomography and magnetic resonance imaging ([18F]FDG-PET/MRI) was performed. Age at onset was 24 years and motor impairment was accompanied by prominent non-motor symptoms with early development of dementia, depression, REM sleep behavior disorder, hyposmia, and dysautonomia. Correspondingly, PET-MRI showed hypometabolism and atrophy in frontal, temporoparietal and occipital regions. CSF levels of total α-Syn were threefold higher and RT-QuIC showed remarkable α-Syn seeding activity in all kinetic categories in the SNCATriplication patient compared to patients with GBA mutations. Our results are consistent with findings that not only mutant forms but also overexpression of the wild-type α-Syn protein lead to PD and PD dementia and show a striking CSF α-Syn seeding profile, thus substantiating the role of RT-QuIC as a specific in vivo biomarker of α-Syn brain pathology.

Wurster I., Quadalti C., Rossi M., Hauser A.-K., Deuschle C., Schulte C., et al. (2022). Linking the phenotype of SNCA Triplication with PET-MRI imaging pattern and alpha-synuclein CSF seeding. NPJ PARKINSON'S DISEASE, 8(1), 1-8 [10.1038/s41531-022-00379-8].

Linking the phenotype of SNCA Triplication with PET-MRI imaging pattern and alpha-synuclein CSF seeding

Parchi P.
Conceptualization
;
Quadalti C.
2022

Abstract

Lewy-body pathology with aggregation of abnormal conformations of the protein alpha-synuclein (α-Syn) represent the histopathological hallmarks of Parkinson’s disease (PD). Genetic prototypes such as PD due to mutations in the alpha-synuclein gene (SNCA) offer the opportunity to evaluate α-Syn-related profiles in patient-derived biomaterial. We identified a family with a SNCA triplication and assessed the index patient for CSF α-Syn seeding capacity and levels of total α-Syn along with other neurodegenerative CSF markers (Aβ1-42, total-Tau, phospho-Tau, NFL). As no published CSF data in patients with SNCA triplication are available, we descriptively compared his CSF profiles to those of sporadic PD patients and PD patients with GBA mutations as these are also specifically associated with prominent α-Syn pathology. Additionally, skin biopsies with staining for phospho-α-Syn were done. To assess cerebral glucose metabolism and brain atrophy combined positron emission tomography and magnetic resonance imaging ([18F]FDG-PET/MRI) was performed. Age at onset was 24 years and motor impairment was accompanied by prominent non-motor symptoms with early development of dementia, depression, REM sleep behavior disorder, hyposmia, and dysautonomia. Correspondingly, PET-MRI showed hypometabolism and atrophy in frontal, temporoparietal and occipital regions. CSF levels of total α-Syn were threefold higher and RT-QuIC showed remarkable α-Syn seeding activity in all kinetic categories in the SNCATriplication patient compared to patients with GBA mutations. Our results are consistent with findings that not only mutant forms but also overexpression of the wild-type α-Syn protein lead to PD and PD dementia and show a striking CSF α-Syn seeding profile, thus substantiating the role of RT-QuIC as a specific in vivo biomarker of α-Syn brain pathology.
2022
Wurster I., Quadalti C., Rossi M., Hauser A.-K., Deuschle C., Schulte C., et al. (2022). Linking the phenotype of SNCA Triplication with PET-MRI imaging pattern and alpha-synuclein CSF seeding. NPJ PARKINSON'S DISEASE, 8(1), 1-8 [10.1038/s41531-022-00379-8].
Wurster I.; Quadalti C.; Rossi M.; Hauser A.-K.; Deuschle C.; Schulte C.; Waniek K.; Lachmann I.; la Fougere C.; Doppler K.; Gasser T.; Bender B.; Par...espandi
File in questo prodotto:
File Dimensione Formato  
2022 Wurster et al npjParkinson SNCA triplication.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905171
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact