Availability of georeferenced yield data involving different crops over years, and their use in future crop management, are a subject of growing debate. In a 9 hectare field in Northern Italy, seven years of yield data, including wheat (3 years), maize for biomass (2 years), sunflower, and sorghum, and comprising remote (Landsat) normalized difference vegetation index (NDVI) data during central crop stages, and soil analysis (grid sampling), were subjected to geostatistical analysis (semi-variogram fitting), spatial mapping (simple kriging), and Pearson’s correlation of interpolated data at the same resolution (30 m) as actual NDVI values. Management Zone Analyst software indicated two management zones as the optimum zone number in multiple (7 year) standardized yield data. Three soil traits (clay content, total limestone, total nitrogen) and five dates within the NDVI dataset (acquired in different years) were shown to be best correlated with multiple-and single-year yield data, respectively. These eight parameters were normalized and combined into a two-zone multiple soil and NDVI map to be compared with the two-zone multiple yield map. This resulted in 83% pixel agreement in the high and low zone (89 and 10 respective pixels in the soil and NDVI map; 73 and 26 respective pixels in the yield map) between the two maps. The good agreement, which is due to data buffering across different years and crop types, is a good premise for differential management of the soil-and NDVI-based two zones in future cropping seasons.
Ali A., Rondelli V., Martelli R., Falsone G., Lupia F., Barbanti L. (2022). Management Zones Delineation through Clustering Techniques Based on Soils Traits, NDVI Data, and Multiple Year Crop Yields. AGRICULTURE, 12(2), 1-20 [10.3390/agriculture12020231].
Management Zones Delineation through Clustering Techniques Based on Soils Traits, NDVI Data, and Multiple Year Crop Yields
Ali A.;Rondelli V.;Martelli R.
;Falsone G.;Barbanti L.
2022
Abstract
Availability of georeferenced yield data involving different crops over years, and their use in future crop management, are a subject of growing debate. In a 9 hectare field in Northern Italy, seven years of yield data, including wheat (3 years), maize for biomass (2 years), sunflower, and sorghum, and comprising remote (Landsat) normalized difference vegetation index (NDVI) data during central crop stages, and soil analysis (grid sampling), were subjected to geostatistical analysis (semi-variogram fitting), spatial mapping (simple kriging), and Pearson’s correlation of interpolated data at the same resolution (30 m) as actual NDVI values. Management Zone Analyst software indicated two management zones as the optimum zone number in multiple (7 year) standardized yield data. Three soil traits (clay content, total limestone, total nitrogen) and five dates within the NDVI dataset (acquired in different years) were shown to be best correlated with multiple-and single-year yield data, respectively. These eight parameters were normalized and combined into a two-zone multiple soil and NDVI map to be compared with the two-zone multiple yield map. This resulted in 83% pixel agreement in the high and low zone (89 and 10 respective pixels in the soil and NDVI map; 73 and 26 respective pixels in the yield map) between the two maps. The good agreement, which is due to data buffering across different years and crop types, is a good premise for differential management of the soil-and NDVI-based two zones in future cropping seasons.File | Dimensione | Formato | |
---|---|---|---|
agriculture-12-00231-v2-2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.