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Abstract: Availability of georeferenced yield data involving different crops over years, and their use
in future crop management, are a subject of growing debate. In a 9 hectare field in Northern Italy,
seven years of yield data, including wheat (3 years), maize for biomass (2 years), sunflower, and
sorghum, and comprising remote (Landsat) normalized difference vegetation index (NDVI) data
during central crop stages, and soil analysis (grid sampling), were subjected to geostatistical analysis
(semi-variogram fitting), spatial mapping (simple kriging), and Pearson’s correlation of interpolated
data at the same resolution (30 m) as actual NDVI values. Management Zone Analyst software
indicated two management zones as the optimum zone number in multiple (7 years) standardized
yield data. Three soil traits (clay content, total limestone, total nitrogen) and five dates within the
NDVI dataset (acquired in different years) were shown to be best correlated with multiple- and
single-year yield data, respectively. These eight parameters were normalized and combined into a
two-zone multiple soil and NDVI map to be compared with the two-zone multiple yield map. This
resulted in 83% pixel agreement in the high and low zone (89 and 10 respective pixels in the soil and
NDVI map; 73 and 26 respective pixels in the yield map) between the two maps. The good agreement,
which is due to data buffering across different years and crop types, is a good premise for differential
management of the soil- and NDVI-based two zones in future cropping seasons.

Keywords: crop yields; fuzzy c-means clustering; management zones; NDVI; precision field cropping;
soil traits; spatial variability

1. Introduction

Field management zones in precision agriculture (PA) are defined as “the sub-regions
within the same piece of land showing similar yield influencing factors within which
different crop management practices are carried out at the right time and place to optimize
crop productivity and minimize adverse environmental impact” [1]. Well delineated
homogenous areas should have the same yield trend across years and different cultivated
crops [2]. These management zones are not only used for site-specific, real-time crop
management, but also for soil sampling to characterize the soil nutrient levels for variable
rate fertilization [3]. Under uniform crop management practices, fertilizer use efficiency
is quite low [4,5]. Therefore, efficient fertilizer management practices as those under PA
are expected to enhance the efficiency of nutrients supplied with fertilizers, as a premise
for improved crop yield. Specifically, crop input rates, i.e., fertilizers, should be applied
based on the crop requirements, estimated through the information of within-field spatial
variability, such as nutrient status or productivity potential, within a specific region of
the field [6,7]. It is recognized that there is often high spatial variability within the same
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field, due to nutrients or other factors or interaction among them, which influence the
final crop yield. The high or low yield factors could be soil, environmental, topographical,
anthropogenic, or biological entities [8]. Specifically, the interaction of various factors
makes it more complex to understand the real story behind them. Therefore, efficient
methods should be used to measure the within-field spatial variability in an appropriate
way for delineating site-specific zones [9].

Geostatistical analysis has been extensively used to estimate the spatial variability of
crop yields, soil, and remote sensing data using different kriging methods with small to
larger size grids [10]. Generally, geostatistics is used to estimate the spatial autocorrelation
within a dataset in terms of variogram parameters and spatial mapping. More to this,
spatial variability within a dataset is estimated through best-fit modelling [11].

Various methods have been developed to measure the within-field spatial variability
for delineating management zones. Most of them rely on single types of data for analysis
of multiple year yield mapping [12–14], various soil properties [15–17], remotely sensed
data [12,18–21], topographic factors [22], and soil apparent electrical conductivity (ECa) [23,24].
All these methods, directly or indirectly, are related to crop productivity [25]. As PA
continuously evaluates the different methods for setting spatial management zones, and
no generally accepted method exists yet, cluster analysis may be a basis for unresolved
questions in delineating management zones [26]. This statistical cluster analysis uses
various types of data sources to develop within-field areas at similar characteristics (soil
and crop-related parameters or environmental impact) for the quantification of spatial
variability trends and to optimize crop productivity through site-specific crop management
practices [27]. Franzen and Kitchen (1999) [28] used different typologies of data such as
topography, satellite imagery, soil electrical conductivity, crop yields, and soil properties,
to develop potential zones for variable nitrogen rates. However, delineating management
zones based on crop yields, soil, and satellite data have all been considered as logical
methods in PA [2,29,30].

Based on this, in a field subjected to arable cropping with a georeferenced record of
crop yield data for a number of years, the objectives of this study were: (1) to characterize
the spatial variability of crop yields, soil properties, and remotely sensed NDVI data
influencing crop productivity through geostatistical analysis; (2) to delineate feasible
crop management zones with a fuzzy clustering method, using previous crop yields, soil
properties, and NDVI data; (3) to interpret the obtained management zones for site-specific
management in view of future crop management practices.

2. Materials and Methods
2.1. Study Site

The study was conducted on an 8.94 ha area located near Budrio, Bologna, in Northern
Italy (49◦43’41” N, 70◦67’52” E, 15 m above sea level). The area falls in the Mediterranean
North Environmental Zone [31]. The uppermost field part has a sandy texture, compared
to the central and lower parts where the soil is richer in clay. The experimental area falls in
a temperate–warm climate zone, where average temperature is around 15 ◦C on a yearly
basis, whereas precipitation is mostly registered in the cold semester.

2.2. Data Collection
2.2.1. Crop Data

In this field’s history, georeferenced yield data were collected at harvest for seven
years between 2005 and 2020. They were three years of winter cereals and four years of
spring/summer cereals, also including a dicot. The period considered (7 years of data
over 16 years) derives from the availability of georeferenced yield data, limited only to
crops that are harvested with a machine equipped with a yield monitoring system. The
specific crops, their seeding and harvesting dates, and subsequent crop cycles are reported
in Table 1. Good management practices were used for the cultivation of each specific crop,
based on local conditions.
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Table 1. Seeding and harvesting dates, and crop duration of cultivated crops.

Crop & Year Botanical Name Seeding Harvesting Duration (Days)

BW 2005 Triticum aestivum L. 19 October (2004) 24 June 248
SU 2006 Helianthus annuus L. 10 April 12 September 155
BW 2007 Triticum aestivum L. 9 October (2006) 18 June 252
BW 2009 Triticum aestivum L. 21-October (2008) 30 June 252
SO 2010 Sorghum bicolor L. 21 April 28 August 129
MA 2018 Zea mays L. 18 June 25 September 99
MA 2020 Zea mays L. 28 March 8 August 133

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize.

For five years, grain yield (GY) data were collected by a New Holland CR 9080 (CNH
Industrial N.V., Basildon, UK), equipped with an assisted guiding system based on real-
time kinematic GPS, yield mapping, consisting of a Pektron flow meter (Pektron Group Ltd.,
Derby, UK), and an Ag Leader moisture sensor (Ag Leader Technology, Ames, IA, USA).
Among seven years, maize crop was cultivated for biomass production during cropping
seasons of 2018 and 2020. The crop was harvested with a New Holland FR Forage Cruiser
780, fully integrated with auto-guidance package RTK correction signals. The sensor of feed
roller displacement measured crop throughput, giving the yield data. The resistive-type
moisture-sensing system provided real-time moisture data displayed and registered in
the in-cab IntelliView™ system. Raw yield data were filtered using Yield Editor software
(Version 2.0.7; USDA-ARS, Columbia, MI, USA), outliers were removed, and moisture was
adjusted at 13% for wheat, 9% for sunflower, 14% for sorghum and 0% for maize. The final
yield points of each crop were intersected with the field boundary layer. Then average of
GY data points were 12152 for wheat per year, 6455 and 6575 for sunflower and sorghum,
respectively, whereas an average of 27,808 data points for maize per year were retained for
further analysis.

2.2.2. Soil Sampling

Spatial soil variability was determined through the grid soil sampling technique. At
each grid, one representative soil sample was collected at 0.0–0.3 and 0.3–0.6 m soil depth,
and the position of each sampling site was recorded with a Trimble GPS. In this way, 21 soil
samples were collected to assess the soil physical-chemical properties over the entire field
during the year 2019, as shown in Figure 1. A manual soil probe was used for collecting the
soil samples. At the end, all samples were air-dried at 40 ◦C and sieved to 2 mm diameter.
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2.2.3. NDVI Index

Remotely sensed NDVI data from a Landsat 5-Thematic Mapper (TM), Landsat
7-Enhanced Thematic Mapper Plus (ETM+) and a Landsat 8-Operational Land Imager
(OLI) were downloaded using US Geological Survey (USGS)-Earth Explorer platform. Col-
lection Level-1 (C1L1), Tier 1, Precision Terrain (LITP) was the adopted inventory structure
that provided the highest quality data for the time-series records, with 16 days average
revisiting time (temporal resolution). More, the USGS-Landsat data collection platform
was used, having 30 m spatial resolution, for vegetation monitoring during the growing
period of surveyed crops [32]. Landsat satellite scene selection was done under a clear
sky and good quality of pixels at field level. Multispectral NDVI time-series data were
downloaded over the entire following prospections: 28 February–15 June for BW 2005, 20
April–20 August for SO 2006, 21 February–20 May for BW 2007, 15 February–30 May for
BW 2009, 11 May–29 July for SO 2010, 9 July–21 September for MA 2018, 28 April–26 July
for MA 2020. Depending on available data, different Landsat missions were used during
effective crop growing periods as shown in Table 2. A total of 26 images during the study
period were retained as being the most interesting ones (Table 2), and used in subsequent
analysis. The NDVI index was calculated through the near-infrared and red portion of the
electromagnetic spectrum, based on the formula shown in Equation (1):

NDVI =
(RNIR − RRed)

(RNIR + RRed)
(1)

where, RNIR and RRed represent the reflectance values of near-infrared and red (visible),
respectively.

Table 2. Prospection of remotely sensed NDVI imagery and corresponding dates after sowing (DAS).

Crop & Year LS- Mission Date DAS

BW 2005

LS-7 ETM+ 15 April 178
LS-5 TM 23 April 186

LS-7 ETM+ 1 May 194
LS-7 ETM+ 2 June 226

SU 2006 LS-5 TM

26 April 16
15 July 96
31 July 112

16 August 127

BW 2007

LS-7 ETM+ 4 March 146
LS-7 ETM+ 5 April 178

LS-5 TM 29 April 202
LS-5 TM 15 May 218

BW 2009
LS-7 ETM+ 21 February 123

LS-5 TM 18 April 179
LS-5 TM 20 May 211

SO 2010 LS-5 TM
8 June 48

24 June 64
10 July 80

MA 2018

LS-7 ETM+ 24 July 36
LS-7 ETM+ 9 August 52

LS-8 OLI 17 August 60
LS-7 ETM+ 10 September 84

MA 2020

LS-7 ETM+ 26 May 59
LS-8 OLI 19 June 83
LS-8 OLI 5 July 99
LS-8 OLI 21 July 115

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; LS, Landsat; DAS, days after sowing.
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2.3. Analysis Methods
2.3.1. Descriptive Statistics

All surveyed datasets were subjected to descriptive statistics to characterize them
based on their mean, minimum, maximum, standard deviation, skewness, and kurtosis.
In this study, averaged soil depth data (0–0.6 m) was used, resulting from the separate
analysis of 0–0.3 and 0.3–0.6 m depth samples [14].

2.3.2. Soil Analysis

The 42 soil samples resulting from the 21 positions per 2 depths (0–0.3 and 0.3–0.6 m)
were subjected to the following determinations: sand, silt, clay, pH, total limestone (CaCO3),
organic carbon (C), total nitrogen (N), and electrical conductivity of the soil saturated extract
(ECe) with a 1:2.5 (w/w) soil-to-water ratio. The soil texture was determined by the pipette
method [33]. Soil pH was determined in a 1:2.5 (w/w) soil-to-water ratio. Total limestone
was determined volumetrically [34]. Total organic C and total N were determined by a
CHNS-O Elemental Analyser 1110, Thermo Scientific GmbH, Dreieich, Germany. The
complete dataset is reported in the Supplementary Materials (Table S2).

2.3.3. Geostatistical Analysis

The geostatistical analysis was performed on crop yields, soil, and NDVI data to ex-
plain the spatial dependence (SpD) in their datasets in relation to the variogram parameters:
nugget (C0), the error at 0 distance; sill (C0 + C), the maximum value at y-axis that increases
with increasing lag distance (h); range (a), the maximum distance at which data points are
still correlated. The degree of SpD was calculated by nugget-to-sill ratio and interpreted
according to Cambardella et al. [35]: it was indicated as being strong with SpD < 25%;
intermediate, in the range 25–75%; weak with SpD > 75%. To archive the best prediction
accuracy, we employed the iterative cross-validation technique, seeking the highest coef-
ficient of determination (R2) and minimal error parameters: mean absolute error (MAE),
root mean square error (RMSE), and absolute standard error (ASE). Based on this, we used
the best fitting semi-variogram model among the circular, spherical, exponential, Gaussian,
and stable models [36].

2.3.4. Spatial Maps

Spatial maps of crop yields, soil, and NDVI data were delineated by simple kriging
(SK) interpolation with a 10 m grid size. SK was chosen because it gives maximum R2 and
minimum error parameters [36].

For yield mapping over single and multiple crops, standardized interpolated data laid
over 937 grid points were used, through converting the actual GY (t/ha) into a relative
percentage, which gives an 100% field average over entire dataset [14]. The procedure is
given below:

Over a single crop, the formula of Equation (2) was used to delineate the spatial maps
over a single crop of the specified year:

Si =

(
yi
y

)
× 100 (2)

where, Si = standardized yield (percentage) at point (i), yi = interpolated yield at point i
(t/ha), and y = average interpolated yield (t/ha) over the entire dataset across the field.

Over multiple crops, the spatial map was delineated by calculating the averaged
values (relative percentage) laid over seven years of crop yield with this formula, shown in
Equation (3).

Si =
∑n

t=1 SiI

n
(3)
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where, Si = mean interpolated yield (percentage) over n years, i.e., as the seven-year yield,
at point (i); SiI = interpolated yield (percentage) at point (i), summed over the seven years
surveyed, n = number of years surveyed (=7).

Over multiple crops, the temporal map was delineated based on the “coefficient of
variation (CV %)” of each grid point over seven years of crop yield (Equation (4)) [37].
However, a temporal variability map was produced to determine the consistency of crop
yields over seven years of cropping history.

CVSi =

( (
n ∑t=n

t=1 Sit2−(∑t=n
t=1 Sit)

2)
n(n−1)

)0.5

Si
× 100 (4)

where, CVSi = coefficient of variation of the standardized yield at point (i) over n years;
Sit = standardized yield (percentage), at point (i); Si = mean standardized yield at point (i).

To define the similarity among spatial maps, they were developed with five classes,
using the equal interval classification method. Map production and geostatistical data
analysis were carried out with the ArcGIS software (Version 10.3, ESRI, Redlands, CA, USA)
under the reference system WGS 84/UTM zone 32 N.

2.3.5. Pearson’s Correlation

For summarizing and data clustering purpose, we aggregated the interpolated crop
and soil data with a 30 m wide grid to a similar extent of NDVI imagery (30 m resolution).
The attribute point layer of the measured data was joined with the polygon grid by using
the mean function to calculate the mean values fallen in each grid, resulting in 99 data
points. Thereafter, we determined the Pearson’s correlations at the same layer extent
between yield, soil, and NDVI data.

2.3.6. Delineation of Management Zones

After geostatistical and correlation matrices, the fuzzy c-means clustering algorithm
method was used to classify the data and evaluate the feasible number of clusters by
the Management Zone Analyst (MZA) software [30,38]. Using this specific software, the
following clustering parameters were defined:

• Measure of similarity: Euclidean for univariate, Diagonal for independent and Maha-
lanobis for multivariate

• Fuzziness exponent = 1.30.
• Maximum no. of iterations = 300.
• Convergence criterion = 0.0001.
• Maximum no. of zones = 6.
• Minimum no. of zones = 2.

The optimum number of clusters is achieved at minimal values of the two indices
FPI (fuzziness performance index) and NCE (normalized classification entropy), which
together indicate data dispersion [38]. Over seven years of crop yield data, FPI and NCE
values were minimized when classified into two clusters (Table 3). Hence, the two-zone
option was selected based on the minimal FPI and NCE indices, because more than two
zones were redundant.

In order to select the parameters of soil and NDVI indices that could be the best
candidates for delineating the management zones, based on the multiple soil traits and
NDVI indices, we selected the three soil traits (clay, CaCO3, and N), which showed the best
correlations with multiple crops’ yield data. For the selection of NDVI data, we chose data
from one acquisition date per year, which presented high and significant correlations with
yield data in each specific year (15 April 2005, 29 April 2007, 21 February 2009, 24 June 2010,
and 24 July 2018). However, no NDVI data was chosen for SU 2006 and MA 2018 due to
insignificant correlations.
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Table 3. Values of FPI and NCE based on standardized crop yields over seven years for the delineation
of 2, 3, and 4 zones.

Number of Clusters Crop Yields

FPI NCE
2 0.0369 0.0151
3 0.1007 0.0536
4 0.1342 0.0809

FPI (fuzziness performance index), NCE (normalized classification entropy).

Thereafter, we developed two-zone maps based on each of the eight soil traits and
NDVI data, using the MZA clustering method. We went further and developed a final
two-zone map based on best multiple soil traits and NDVI data: dealing with datasets
having different units, we used normalized data (average = 0, SD = 1) to remove the weight
of each parameter during cluster analysis. Similarly, a two-zone map over seven years of
multiple crops’ yield was also developed, which was used as a reference map.

Since the main goal of this study was to optimize crop productivity, the two-zone
maps based on single or multiple parameters were compared with the two-zone yield map
(reference map). According to the procedure used, each pixel of the map (independent
variable/s) was compared with the same cell of the two-zone yield map (Figure 2). Pixel
agreement was calculated as being the number of pixels belonging to the same zone (i.e.,
number of pixels belonging to a high yield zone (e.g., map of SU_2006) and a high single
soil property zone (e.g., map of carbon zones), plus the number of pixels belonging to low
yield zone and a low soil property zone, divided by the total number of pixels, to provide
an index of the overall accuracy, i.e., a degree of spatial agreement between the compared
data. In contrast to this, disagreement was established if there was no zone consistency
between pixels of independent variable/s and yield maps.
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2.3.7. Weather Data

The weather data was downloaded by the nearest station of the Hydro-meteorological
Service of the Emilia-Romagna Region, under the ARPAE datahub platform. The wet
and dry periods during the growing seasons of the surveyed crops were calculated as the
difference between precipitation (p) plus, only in MA 2018, irrigation, and crop evapotran-
spiration (ETC), this latter determined according to Allen et al. [39]. The data are reported
in the Supplementary Materials (Table S1).

2.3.8. Statistical Analysis

Crop yields, soil traits, and NDVI data were subjected to descriptive statistics. Pear-
son’s correlation (r) was used to evaluate the relationships between soil properties and
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NDVI data on one side, and single and multiple yields on the other side. One way analysis
of variance (ANOVA) was run with the Statistica 10 software (StatSoft Corp., Tulsa, OK,
USA) to assess the differences in soil, NDVI and yield data in the two-zone maps. The least
significant difference (LSD) at p < 0.05 was used to indicate significant differences between
the high and low zone.

3. Results
3.1. Crop Yields: Descriptive Statistics, Spatial Variability, and Spatial Maps

The descriptive statistics of the standardized crop yields in the seven years indicates a
sizable variation around the mean yield for all the crops (Table 4). Standard deviation (SD)
was between 4.4 (MA_2018) and 14% (SU_2006) of the mean.

Table 4. Descriptive statistics of standardized crop yields over seven years (means = 100).

Source Median Min Max SD Skewness Kurtosis

BW_2005 102 43 125 12.6 −1.23 2.84
SU_2006 100 46 147 14 −0.11 0.56
BW_2007 101 57 140 12.8 −0.45 0.69
BW_2009 102 52 133 12.9 −0.8 0.75
SO_2010 100 66 208 10.4 1.21 12.5
MA_2018 101 79 107 4.4 −1.53 3.21
MA_2020 101 29 149 12.6 −0.88 2.38

Actual mean yield (t/ha); BW_2005 (6.91), SU_2006 (2.00), BW_2007 (3.50), BW_2009 (6.59), SO_2010 (2.71),
MA_2018 (14.52), MA_2020 (24.5); BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; SD, standard deviation.

The pattern of crop yield spatial distribution indicates that, for five crops, the stable
model was the best fitting, while for the remaining two crops, two different models (spher-
ical and exponential) were the best fitting (Table 5). Based on the relationship between
nugget and sill, a strong spatial dependence was evidenced in all cases up to the range,
which varied from a minimum of 22 m (MA_2020) to a maximum of 146 m (SU_2006). The
parameters of prediction accuracy indicate an overall good fitting (R2) and low error in
terms of the three parameters, MAE, RMSE, and ASE (Table 5). The overall good fitting
is reflected in all the fitted models closely interpolating measured points (Figure S1 in the
Supplementary Materials).

Table 5. Semi-variogram parameters of standardized crop yields over seven years.

Source Model C0 C0 + C a (m) C0/(C0 + C) % SpD R2 MAE RMSE ASE

BW_2005 Stable 27.8 140 29 20 S 0.96 0.028 9.75 10.5
SU_2006 Stable 40.6 330 146 12 S 0.95 −0.0035 10.1 12.5
BW_2007 Stable 0 283 52 0 S 0.90 0.0061 10.7 12.3
BW_2009 Spherical 24.8 164 10 15 S 0.94 0.021 7.87 7.78
SO_2010 Stable 0 212 87 0 S 0.92 0.098 6.69 10.3
MA_2018 Exp. 0 13 25 0 S 0.87 0.0004 1.46 1.92
MA_2020 Stable 30.7 189 22 16 S 0.87 −0.08 6.81 7.56

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; C0, nugget; C, partial sill; C0 + C, sill; a, range; C0/(C0 + C),
nugget-to-sill ratio; SpD, spatial dependence; S, strong; R2, coefficient of determinants, MAE, mean absolute error;
RMSE, root mean square error; ASE, absolute standard error.

The spatial maps reveal consistently low yielding areas near the SW and NE borders,
whereas the high yielding areas are more variably dispersed across the field in the seven
years (Figure 3a). The multiple crops map averages the single year patterns by indicating
lower yielding areas near the SW and NE borders, and higher yielding areas quite evenly
spread in the central part of the field (Figure 3b). Higher yields were associated with lower
inter-annual variability (lower CV), with respect to lower yields (Figure 3b).
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3.2. Soil Traits: Descriptive Statistics, Relationships with Yield, Spatial Variability, and
Spatial Maps

On average, sand and silt particles predominated in the soil at 0–0.6 m of depth
(Table 6), although all three particle size classes (sand, silt, and clay) staged a noticeable
variability (SD ranging from 27 to 42% of the mean). The data of the two soil depths (0–0.3
and 0.3–0.6 m) are shown in Table S2 of the Supplementary Materials. The pH was always
close to 8, which was consistent with a significant, quite stable content of total limestone
(CaCO3). The amount of total organic carbon and total nitrogen was within the range of
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the average data of this area. The C:N ratio, below 10, indicates a soil prone to organic
matter mineralization. Lastly, soil salinity (ECe) was barely detectable, which is consistent
with this soil being far away from sources of salinity, such as the seacoast or wells/streams
supplying brackish water. The semi-variogram parameters of soil traits are reported in
Table 7.

Table 6. Descriptive statistics of soil traits (depth 0–0.6 m).

Soil Variables Mean Median Min Max SD Skewness Kurtosis

Sand (g/kg) 549 504 335 793 147 0.22 −1.32
Silt (g/kg) 354 379 153 529 116 −0.16 −1.33

Clay (g/kg) 97 110 35 156 37.9 −0.28 −1.39
pH 7.93 7.90 7.72 8.19 0.13 0.72 −0.1

CaCO3 (g/kg) 144 145 116 162 11.1 −0.71 0.66
C (g/kg) 13.5 14.0 8.7 17.1 2.33 −0.4 −0.54
N (g/kg) 1.62 1.68 1.08 2.06 0.28 −0.32 −0.7

C:N 8.34 8.40 7.96 8.81 0.23 0.07 −0.85
ECe (ds/m) 0.42 0.41 0.26 0.63 0.1 0.6 −0.39

Min, minimum; Max, maximum; SD, standard deviation.

Table 7. Semi-variogram parameters of soil traits.

Source Model C0 C0 + C a (m) C0/(C0 + C)% SpD R2 MAE RMSE ASE

Sand Spherical 0 717 119 0 S 0.98 1.16 12.29 15.48
Silt Exp. 0 531 125 0 S 0.96 −0.78 12.22 17.06

Clay Exp. 0 39.5 120 0 S 0.95 −0.20 3.83 4.73
pH Exp. 0 0.00003 90 0 S 0.92 −0.00011 0.0042 0.0045

CaCO3 Exp. 0 0.48 139 0 S 0.96 −0.012 0.40 0.49
C Exp. 0 0.16 118 0 S 0.94 0.0034 0.26 0.30
N Exp. 0 0.0024 130 0 S 0.94 0.00092 0.032 0.036

C:N Spherical 0 0.0035 140 0 S 0.94 −0.0020 0.026 0.031

C0, nugget; C, partial sill; C0 + C, sill; a, range; C0/(C0 + C), nugget-to-sill ratio; SpD, spatial dependence;
S, strong; R2, coefficient of determinants, MAE, mean absolute error; RMSE, root mean square error; ASE, absolute
standard error.

The relationships between soil traits and crop yields in the single and multiple crops
point out some traits as having significant correlations with yield in many single years and
in the seven-year combination (Table 8). This is the case for clay content, total limestone,
and total nitrogen. Another trait, ECe, shows significant correlations with yield only for
two years and is not significantly correlated with multiple, i.e., seven-year, crop yield.
Based on this, ECe was dismissed in the subsequent assessment of spatial variability and
the drawing of spatial maps.

Table 8. Pearson’s correlations between soil traits and crop yields (n = 99).

Soil Traits BW_2005 SU_2006 BW_2007 BW_2009 SO_2010 MA_2018 MA_2020 Mean Yields

Sand −0.69 −0.09 −0.19 −0.17 −0.08 −0.58 −0.07 −0.44
Silt 0.67 0.08 0.20 0.14 0.08 0.59 0.07 0.43

Clay 0.71 0.23 0.17 0.34 0.04 0.37 0.10 0.47
pH −0.68 0.15 −0.08 −0.06 0.16 −0.53 0.24 −0.26

CaCO3 −0.18 0.29 0.38 0.37 0.64 0.14 0.43 0.36
Carbon 0.09 0.12 0.44 0.25 0.17 0.07 0.61 0.30

Nitrogen 0.15 0.11 0.47 0.23 0.20 0.16 0.60 0.34
C/N −0.40 0.10 −0.12 0.15 −0.16 −0.56 0.08 −0.22
ECe −0.01 0.10 0.36 0.17 0.10 −0.04 0.48 0.18

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; bold letter correlations are significant at p < 0.05
according to Pearson correlation.
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The interpolated maps of soil traits exhibit a variable picture (Figure 4): sand shows a
spatial distribution of high and low values, which is approximately opposed to that of silt
and clay; carbon and nitrogen have the same spatial pattern; the rest of traits outline spatial
distributions scarcely related to the previous traits.
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3.3. NDVI Indices: Descriptive Statistics, Relationships with Yield, Spatial Variability, and
Spatial Maps

Three or four NDVI dates were retained in each crop for the present work. They were
mostly acquired in the central stages of the seven crops (Table 9). The mean values are
the most varied, depending on more or less favorable ambient conditions, as well as plant
stage: crops approaching senescence displayed generally lower NDVI values. However, in
SU_2006, NDVI values never attained the level of 0.60 during the whole crop cycle.

The relationships between NDVI data and single crop yields evidence several dates in
specific crops where NDVI data are significantly correlated with yield (Table 10). However,
in the case of SU_2006 and MA_2020, there is no NDVI data significantly correlated with the
final yield. Based on insignificant correlations with yield, NDVI from these two crops and
from 23-Apr in BW_2005 were dismissed in the subsequent assessment of spatial variability
and the drawing of spatial maps.
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Table 9. Descriptive analysis of NDVI indices.

Crop & Year Acquisition Date Mean Median Min Max SD Skewness Kurtosis

BW 2005

15 April 0.69 0.70 0.53 0.73 0.03 −2.22 7.67
23 April 0.47 0.49 0.22 0.52 0.06 −2.61 6.19
1 May 0.76 0.76 0.7 0.79 0.02 −1.33 1.5
2 June 0.5 0.50 0.41 0.55 0.03 −0.42 −0.81

SU 2006

26 April 0.16 0.16 0.13 0.28 0.03 2.04 5.01
15 July 0.55 0.56 0.47 0.61 0.03 −0.4 0.51
31 July 0.41 0.41 0.33 0.45 0.02 −0.96 1.12

16 August 0.32 0.33 0.1 0.57 0.13 0.01 −1.25

BW 2007

4 March 0.72 0.73 0.58 0.75 0.03 −2.35 6.31
5 April 0.84 0.84 0.78 0.86 0.02 −1.73 3.29

29 April 0.67 0.67 0.61 0.68 0.01 −1.76 3.55
15 May 0.61 0.61 0.58 0.64 0.01 −0.47 −0.02

BW 2009
21 February 0.54 0.55 0.44 0.61 0.03 −0.82 1.81

18 April 0.68 0.67 0.57 0.73 0.03 −1.18 4.13
20 May 0.61 0.62 0.56 0.64 0.01 −1.77 5.34

SO 2010
8 June 0.48 0.49 0.34 0.54 0.04 −1.14 1.79
24 June 0.72 0.73 0.67 0.75 0.01 −1.46 2.58
10 July 0.72 0.73 0.68 0.74 0.01 −2.47 8.54

MA 2018

24 July 0.59 0.60 0.31 0.66 0.06 −2.75 10.09
9 August 0.64 0.65 0.41 0.69 0.05 −1.39 2.49

17 August 0.78 0.81 0.41 0.84 0.07 −2.6 7.72
10 September 0.56 0.59 0.31 0.63 0.07 −1.86 3.05

MA 2020

26 May 0.55 0.58 0.3 0.65 0.08 −1.55 1.67
19 June 0.84 0.88 0.37 0.9 0.11 −2.93 8
5 July 0.81 0.85 0.37 0.87 0.11 −2.75 7.13

21 July 0.8 0.83 0.4 0.85 0.09 −2.84 7.64

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; Min, minimum; Max, maximum; SD, standard deviation.

Table 10. Pearson’s correlations (r values) between NDVI data in different acquisition dates and crop
yields (n = 99).

BW_2005 SU_2006 BW_2007 BW_2009 SO_2010 MA_2018 MA_2020

0.79 (15 April) −0.30 (26 April) 0.53 (4 March) 0.79 (21 February) 0.29 (8 June) 0.55 (24 July) 0.16 (26 May)
0.05 (23 April) −0.17 (15 July) 0.57 (5 April) 0.48 (19 April) 0.53 (24 June) 0.36 (9 August) 0.18 (19 June)
0.71 (1 May) 0.06 (31 July) 0.58 (29 April) 0.54 (20 May) 0.31 (10 July) 0.32 (17 August) 0.20 (5 July)
0.58 (2 June) 0.18 (16 August) 0.31 (15 May) 0.24 (10 September) 0.22 (21 July)

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; correlations in bold are significant at p < 0.05.

In the remaining 17 cases, the spatial pattern of NDVI values was best described by an
exponential model (Table 11). The nugget-to-sill relationship indicates a spatial dependence
that goes from moderate (three cases) to strong (14 cases). The range varies from a minimum
of 56 m in SO_2010 to a maximum of 131 m in BW_2005. Prediction accuracy was assured
by R2 values that were generally high, apart from 10 July in SO_2010 (R2 = 0.65); the
error terms (MAE, RMSE; and ASE) were from low to very low. The good fitting of semi-
variogram models, including the single case of modest R2 values, can be visually checked
by the interpolation of measured values (Figure S2 in the Supplementary Materials).

The maps of NDVI (actual values) outline a very differentiated behavior (Figure 5).
Sometimes, the pale and dark green prevail in the map (e.g., 5 and 29 April 2007 ); some
other times, orange and red prevail (e.g., 15 May 2007 and 24 July 2018); in the rest of the
cases, a more balanced palette of colors is shown across the map.
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Table 11. Semi-variogram analysis of NDVI index and best fit exponential model performance.

Crop Acquisition Date C0 C0 + C a (m) C0/(C0 + C) % SpD R2 MAE RMSE ASE

BW 2005
15 April 0 0.87 66 0 S 0.99 0.001 0.017 0.012
1 May 0.58 1.01 131 57 M 0.85 0.00049 0.012 0.0098
2 June 0 1.14 102 0 S 0.90 0.0002 0.01 0.01

BW 2007

4 March 0.13 0.94 69 14 S 0.98 0.00086 0.017 0.015
5 April 0.005 1.01 78 0 S 0.97 0.00069 0.0098 0.0085

29 April 0 1.01 82 0 S 0.96 0.00056 0.01 0.0089
15 May 0 1.11 92 0 S 0.95 0.00002 0.011 0.01

BW 2009
21 February 0 1.03 56 0 S 0.98 0.0007 0.017 0.014

18 April 0 1.11 92 0 S 0.98 0.00003 0.011 0.0102
20 May 0.57 0.96 56 59 M 0.87 0.00015 0.0083 0.0071

SO 2010
8 June 0 1.2 102 0 S 0.99 0.00006 0.02 0.0201

24 June 0.36 0.92 56 39 M 0.88 0.00056 0.01 0.0081
10 July 0.61 0.92 59 67 M 0.65 0.0003 0.0086 0.0069

MA 2018

24 July 0 1.09 130 0 S 0.99 0.0024 0.031 0.023
9 August 0 1.01 110 0 S 0.99 0.001 0.019 0.016
17 August 0.12 1 83 12 S 0.99 0.0033 0.038 0.029

10 September 0 0.95 63 0 S 0.99 0.0019 0.026 0.022

BW, bread wheat; SU, sunflower; SO, sorghum; MA, maize; C0, nugget; C, partial sill; C0 + C, sill; a, range; C0/(C0 + C),
nugget-to-sill ratio; SpD, spatial dependence; S, strong; M, moderate; R2, coefficient of determinants, MAE, mean
absolute error; RMSE, root mean square error; ASE, absolute standard error.

3.4. Two-Zone Maps of Soil Properties, NDVI Data, Their Combination, and Agreement with Yield

Two-zone maps of the three soil properties and five NDVI, based on single property
datasets, resulted in the best correlation with yield (Tables 8 and 10, respectively), and
are shown in Figure 6. Their composition in terms of data points, average value, and
agreement with the two-zone multiple yield map are reported in Table 12. Soil property
maps evidence a variable pattern and a more balanced size between high and low zones;
in contrast, NDVI maps show a more uniform pattern, associated with a prevalence of
the high zone. The agreement with the multiple yield map goes from 76 (CaCO3) to 95%
(NDVI of 15 April in BW_2005). In each of the eight parameters, the high level is statistically
differentiated from the low level. In addition, two-zone maps of soil traits and NDVI data
exhibiting significant correlations with crop yields are also shown in the Supplementary Ma-
terials (Figures S3 and S4) with their statistical differences and pixel agreement with yields
(Tables S3 and S4), respectively.

The two-zone soil and NDVI map, based on the combination of the eight above
discussed parameters, and the two-zone yield map over seven years of multiple crops are
shown in Figure 7. Their composition in terms of data points, average value, and agreement
between pixels of the former and latter map are reported in Table 13. The two maps are very
similar, with a prevalence of the high zone (89 and 73 pixels in the two respective maps).
Their agreement is high (83%). The high and low levels are statistically differentiated in
six traits out of eight (CaCO3 and pH being undifferentiated), as well as in the multiple
crop yield.
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cussed parameters, and the two-zone yield map over seven years of multiple crops are 

Figure 6. Two-zone maps of single soil properties and NDVI indices (these latter simply indicated by
their acquisition dates).

Table 12. Statistical differences between two-zone single soil properties and NDVI indices, and their
pixel agreements (percentage) with two-zone multiple crops yield map.

Variables Zones Data Points Mean ± SD Agreement (%)

Clay (g/kg) High clay
Low clay

67 112 ±7.39 a
9432 79.3 ± 10.42 b

CaCO3 (g/kg) High CaCO3 49 146 ± 1.31 a
76Low CaCO3 50 142 ± 1.05 b

Nitrogen (g/kg) High Nitrogen 54 1.69 ± 0.08 a
81Low Nitrogen 45 1.48 ± 0.07 b

NDVI
15-Apr-2005

High NDVI 78 0.70 ± 0.012 a
95Low NDVI 21 0.65 ± 0.032 b

NDVI
29-Apr-2007

High NDVI 84 0.67 ± 0.006 a
89Low NDVI 15 0.64 ± 0.013 b

NDVI
21-Feb-2009

High NDVI 50 0.57 ± 0.014 a
77Low NDVI 49 0.52 ± 0.021 b

NDVI
24-Jun-2010

High NDVI 51 0.73 ± 0.004 a
78Low NDVI 48 0.71 ± 0.013 b

NDVI
24-Jul-2018

High NDVI 95 0.60 ± 0.033 a
78Low NDVI 4 0.38 ± 0.068 b

SD, standard deviation; means bearing different letters are significantly different within 2-zone classes at p < 0.05
according to the least-significant difference (LSD) test.
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Figure 7. Two-zone multiple soil and NDVI map, (a); two-zone multiple crops yield map (b).

Table 13. Statistical differences between two-zone multiple soil properties and NDVI indices, and
their pixel agreements (percentage) with two-zone multiple crops yield map.

Variables Zones Data Points Mean ± SD Agreement (%)

Clay (g/kg) High values 89 103 ± 16.7 a

83%

Low values 10 87.5 ± 19.8 b

CaCO3 (g/kg) High values 89 144 ± 2.09 a
Low values 10 143 ± 2.53 a

Nitrogen (g/kg) High values 89 1.61 ± 0.13 a
Low values 10 1.54 ± 0.14 a

NDVI 15-Apr-05 High values 89 0.70 ± 0.02 a
Low values 10 0.63 ± 0.04 b

NDVI 29-Apr-07 High values 89 0.67 ± 0.01 a
Low values 10 0.63 ± 0.01 b

NDVI 21-Feb-09
High values 89 0.55 ± 0.02 a
Low values 10 0.50 ± 0.03 b

NDVI 24-Jun-10
High values 89 0.73 ± 0.01 a
Low values 10 0.69 ± 0.01 b

NDVI 24-Jul-18
High values 89 0.60 ± 0.03 a
Low values 10 0.47 ± 0.09 b

Multiple crops
yield (%)

High 73 102 ± 1.72 a
Low 26 94 ± 3.08 b

SD, standard deviation; means bearing different letters are significantly different within 2-zone classes at p < 0.05
according to the least-significant difference (LSD) test.

4. Discussion

The seven annual crops surveyed in this work across the last two decades represent a
good example of the georeferenced yield data that are increasingly being archived, as PA
practices are extending to relatively small farmers. It does not often occur that the reliability
and potential uses of such data are sufficiently understood by potential beneficiaries, who
remain uncertain how to manage them. Therefore, experiments such as that carried out in
this work, serve as good examples of the approach that may be followed in dealing with
yield data, soil and vegetational properties, and the resulting outcomes.

The seven crops, intrinsically, do not have a high degree of similarity: three years of
winter wheat; two years of maize for biomass production, one of which was cultivated as
second crop in a season after a winter grass crop; the remaining two years with a summer
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oilseed (sunflower) and cereal (grain sorghum). They represent the variability that is
normally met in mixed-cropping systems at intermediate latitudes, such as in the case of
the investigated field. The missing years in the series are due to lack of equipment for
georeferenced yield mapping, as in the case of the 2011–2017 gap, when a biogas plant
built in the proximity commenced to be fed with biomass grown in this field, and a maize
cutter-chopper provided with yield mapping was available only in 2018. However, such
gaps may occur also in other cases; thus, the procedure we followed to gather the available
years of data and use them all as a dataset, buffered by different ambient conditions and
crop types, may be of general interest.

The mixed-cropping systems are seldom surveyed in the literature addressing the use
of multiple-year yield data in spatial and temporal variability assessment, despite the fact
that mixed-cropping systems are more common than mono-cropping systems, and they
are supported by funding schemes in the European Union and elsewhere in the world.
More often, multiple-year yield data of a specific crop are used in spatial and temporal
variability assessment [4,40–42]. Alternatively, yield data from cropping systems with the
same crop type as spring grain crops are also used [43]. When compared to these, the
mixed-cropping systems involving different crop types in terms of harvested plant portions
(grain vs. biomass/forage), environmental requirements (autumn- vs. spring-sown crops),
or some other feature, represent a more challenging case. A recent work addressing such a
case [44] envisaged the establishment of four classes of yield level and stability combined,
using data from grain crops and pastures cultivated on the same fields in different years.
The production stability index originating from this approach could discriminate field areas
suited for different management, indicating, as in our case, the feasibility of mixed-cropping
data fusion for interpreting field variability.

The seven crops staged a yield variation which was lower than observed in a previous
study of ours’ [14]: average SD, which in standardized data (means = 100) corresponds
to the coefficient of variation, was 11.4% across the seven years (Table 4), whereas it was
34% across five years in the cited work. This points out the strong diversity that may
be observed between fields of similar size (~10 ha), shape, and topography (flat surface
with underground pipe drainage) in the same area as the Po River floodplain in Northern
Italy. This, in turn, was reflected in only two clusters as the optimum number in this work
(Table 3), based on the principle of minimizing data dispersion. Therefore, no more than
two different management zones would be needed to account for the existing variability,
and this figure, based on seven-year average yield, was assumed as the reference number
also for soil traits and remote NDVI data, in view of subsequent comparisons.

Despite the above-discussed modest variation, all the yield, soil, and NDVI datasets
were fitted with good accuracy by semi-variogram models of various types: the stable
model prevailed in yield fitting (Table 5 and Figure S1), while the exponential model
prevailed in soil traits (Table 7 and Figure S5) and NDVI data (Table 11 and Figure S2).
More to this, the fitted semi-variograms featured a generally strong spatial dependence, i.e.,
a nugget value that was modest, if not negligible, with respect to the total sill (Tables 5, 7 and 11).
This is a good premise for undertaking precision crop management, as the differences in,
say, fertilizer dose that are associated with spatial distance, can be more reliably trusted [35].
For the same reason, a long range would be desirable, as it ensures that the control distance
used for a site-specific operation, e.g., fertilizer spreading, falls in an area of relative
uniformity, and the switch between different doses is sufficiently rapid to account for
spatial variation in fertilizer needs. Based on the principle that the upper limit of cell size,
i.e., the resolution, for a site-specific intervention should not exceed the length of half the
range, to avoid excess heterogeneity within the cell [45,46], it results that the soil traits
and NDVI data in our study have ranges long enough, in general, for a dose variation
to be successfully implemented in real-time (Tables 7 and 11). It is assumed that a vast
majority of the ranges for soil and crop properties falls between 20 and 110 m [47]; therefore,
comparing the range resulting from the semi-variogram analysis with the distance required
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by a specific implement to switch doses can be suggested as a preliminary check in view of
variable crop input application.

In this respect, it is evidenced that the two-zone maps of soil properties, NDVI values,
and multiple yields (Figures 6 and 7) have pixels of sufficient size (30 m) for dose variations
to be implemented when passing from the low to the high zone, and vice versa. This is
associated with modest patchiness of the two-zone maps (Figures 6 and 7): only some
single NDVI maps (e.g., 24-06-2010 in Figure 6) denote a patchy distribution that could pose
problems in the differential application of some factor doses. However, the multiple soil
and NDVI map (Figure 7) was not affected by this drawback, as the eight single parameters
contributing to the multiple soil and NDVI maps provided the buffering that is a desired
characteristic in a map intended for future use. The multiple yield two-zone map (Figure 7)
is an equally well-buffered map, as it originates from the multiple crops relative yield map
(Figure 3b). The good agreement between the multiple soil and NDVI map, and multiple
yield map (83% in Table 13), is a good premise for differential management of soil- and
NDVI-based two zones in future cropping seasons.

5. Conclusions

Arable crop fields subjected for a number of years to georeferenced yield mapping
obtain an amount of data deserving to be exploited in future crop management. The present
work outlines a way to use these data in a field case study, by combining a temporal series
of yield data from different crops into a standardized average yield, mapped through
the field. This represents a robust indication of field spatial variability across varying
weather and crop conditions. In parallel to this, spectral vegetation indices from remote
sources and soil analyses could be obtained, and the soil and spectral vegetation data best
correlated with yield could be combined into a multiple parameter mapped through the
field. Geostatistical and clustering techniques were proven to be able to establish a suitable
number of management zones across the field; in this case, it was only two zones, owing to
the modest yield variability in the surveyed field. Lastly, a good agreement in the high and
low zone between the multiple soil and spectral vegetation and multiple yield map, in this
case 83 pixels out of 99 with agreement, is the ultimate proof that is needed to support the
use of the soil- and vegetational-index-based map in the management of subsequent crops.
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Descriptive statistics of soil traits; Figure S2: Semi-variogram models of NDVI data; Figure S3:
Single soil property zones; Figure S4: Single NDVI zones; Table S3: Statistical differences between
2-zone single soil property maps and their pixel agreements with yield zones; Table S4: Statistical
differences between 2-zone single NDVI maps and their pixel agreements with yield zones; Figure S5:
Semi-variogram graph of soil traits.
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