HIV-1 replication has been inhibited by using a compound able to target the human cellular cofactor DEAD-box ATPase DDX3, essential for HIV-1 RNA nuclear export. This compound, identified by means of a computational protocol based on pharmacophoric modeling and molecular docking calculations, represents the first small molecule with such a mechanism of action and could lay the foundations for a pioneering approach for the treatment of HIV-1 infections. © 2008 American Chemical Society.
Maga G., Falchi F., Garbelli A., Belfiore A., Witvrouw M., Manetti F., et al. (2008). Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3. JOURNAL OF MEDICINAL CHEMISTRY, 51(21), 6635-6638 [10.1021/jm8008844].
Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3
Falchi F.;
2008
Abstract
HIV-1 replication has been inhibited by using a compound able to target the human cellular cofactor DEAD-box ATPase DDX3, essential for HIV-1 RNA nuclear export. This compound, identified by means of a computational protocol based on pharmacophoric modeling and molecular docking calculations, represents the first small molecule with such a mechanism of action and could lay the foundations for a pioneering approach for the treatment of HIV-1 infections. © 2008 American Chemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.